

Real Estate Data Interchange Standard:

Real Estate Transaction Specification

Version 1.5

December 1, 2003

Second Edition

Copyright © 2003 Fidelity National Information Systems, Inc., WyldFyre Technologies, Inc., RealSe

-

lect, Inc., Interealty Corporation, and National Association of Realtors® (collectively, “Authors”). All

rights reserved. This document and translations of it may be copied and furnished to others, and

derivative works that comment on or otherwise explain it or assist in its implementation may be pre

-

pared, published and distributed in whole or in any part without restriction, provided that the above

copyright notice and this paragraph are included on all such copies and derivative works. However,

this document itself may not be modified in any way, such as by removing the copyright notice or ref

-

erence to the copyright owners except as required to translate it into languages other than English. The

limited permissions granted are perpetual and will not be revoked by the copyright owners or their

successors or assignees.

This document and the information contained herein is provided on an as-is basis and Authors hereby

disclaim all warranties, express or implied, including but not limited to any warranty that the use of

the information herein will not infringe any rights or any implied warranties for merchantability or fit

-

ness for a particular purpose.

Version 1.5 Second Edition

Real Estate Transaction Specification

i

1.

 Introduction 1-1

Pur

pose . 1-1
Scope . 1-1
Requirements 1-1

Required Features 1-1
Compatibility with Prior Versions. 1-2

Terminology 1-2

2.

 Notational Conventions 2-1

A

ugmented BNF 2-1
Typographic Conventions 2-1
Rules . 2-1
Atoms and Primitive Entities 2-2

3.

 Message Format 3-1

Gener

al Message Format 3-1
Request Format 3-1
Header Field Format 3-2
Required Client Request Header Fields 3-2
Optional Client Request Header Fields 3-3
Response Format 3-3
Required Server Response Header Fields . . . 3-5
Optional Server Response Header Fields . . . 3-5
Data Compression in RETS Transactions. . . . 3-6
General Status Codes 3-7

4.

 Login Transaction 4-1

Secur

ity . 4-1
User Authentication 4-1
Client Authentication 4-1
Data Security 4-2

Authorization Example 4-2
Required Request Arguments 4-2
Optional Request Arguments 4-2

BrokerCode Argument 4-2
Optional Response Header Fields 4-3
Login Response Body Format 4-3
Required Response Arguments. 4-4

Broker . 4-4
Member Name 4-4
Metadata Version Information 4-4
User information 4-4
Capability URL List 4-5

Optional Response Arguments 4-5
Accounting Information 4-5
Access Control Information 4-5
Office List Information 4-6

Well-Known Names 4-6
Capability URL List 4-6
Reply Codes 4-7

5.

 GetObject Transaction 5-1

Required Client Request Header Fields

 5-1
Optional Client Request Header Fields 5-2
Required Request Arguments 5-2

Optional Request Arguments 5-3
Location 5-3

Required Server Response Header Fields. . . 5-3
Optional Server Response Header Fields . . . 5-4

Location 5-4
Description 5-4

Required Response Arguments 5-4
Optional Response Arguments 5-4
Metadata . 5-4
Resources 5-4
Multipart Responses 5-5
Reply Codes 5-6

6.

 Logout Transaction 6-1

Required Request Arguments

 6-1
Optional Request Arguments 6-1
Required Response Arguments 6-1
Optional Response Arguments 6-1

7.

 Search Transaction 7-1

Search

Types. 7-1
Search Terminology 7-2

Field Delimiter. 7-2
Field Name 7-2
Record Count 7-2
Other terms 7-2

Required Request Arguments 7-3
Search Type and Class 7-3
Query Specification 7-3

Optional Request Arguments 7-3
Count . 7-3
Format 7-4
Limit . 7-4
Offset . 7-4
Select . 7-5
Restricted Indicator 7-5
StandardNames. 7-5

Required Response Arguments 7-5
Search Response Body Format 7-5
Query language 7-7

Query language BNF 7-7
Query parameter interpretation 7-8
Sub-queries 7-9

Reply Codes 7-10

8.

 Get Transaction 8-1

Required Request Arguments

 8-1
Optional Request Arguments 8-1
Required Response Arguments 8-1
Optional Response Arguments 8-1
Status Conditions 8-1

9.

 Change Password Transaction 9-1

Required Request Arguments

 9-1
Optional Request Arguments 9-1
Required Response Arguments 9-1

T

able of Contents

ii

Real Estate Transaction Specification

Version 1.5 Second Edition

Optional Response Arguments 9-1
Reply Codes 9-2
Encryption Key Construction 9-2

10.

 Update Transaction 10-1

Required Request Arguments

 10-1
Optional Request Arguments 10-2
Required Response Arguments. 10-2
Optional Response Arguments 10-2
Update Response Body Format 10-2
Validation 10-3

Lookup 10-3
MultiSelect Lookup. 10-3
Range 10-3
Test Expression 10-4
External 10-4

Reply Codes 10-4

11.

 Metadata Format 11-1

Organization and Retr

ieval 11-1
Metadata Organization. 11-1
General Rules for Interpretation 11-1
Metadata Retrieval Hierarchy 11-2
Hierarchical Metadata in COMPACT Format11-3

System-Level Metadata 11-3
System. 11-3

System Version 11-4
System Date 11-4
System Description 11-4

Resources 11-4
Resource Metadata Content 11-5

Metadata Format for Foreign Keys. 11-8
ForeignKeys Metadata Content. 11-8

Metadata Format for Class Elements11-10
Class. 11-10
Table11-11
Update11-15
Update Type11-16

Metadata Format for Shared Elements11-18
Object 11-18
Lookup11-20
Lookup Type11-21
Search Help 11-22
Edit Mask 11-23

RETS Regular Expression Specification11-25

Update Help. 11-25
Validation Lookup 11-26
Validation Lookup Type 11-28
Validation Expression 11-29
Validation External 11-32
Validation External Type. 11-33

12.

 GetMetadata Transaction 12-1

Required Client Request Header Fields

12-1
Required Request Arguments 12-2
Optional Request Arguments 12-2
Required Server Response Header Fields. . .12-2
Optional Server Response Header Fields . . .12-3
Required Response Arguments 12-3
Optional Response Arguments. 12-3
Metadata Response Body Format12-3
Metadata12-4
Reply Codes 12-4

13.

 Compact Data Format 13-1

Ov

erall format 13-1
Decoded Format13-1
Transmission standards 13-2

14.

 Session Protocol 14-1

Connection Estab

lishment14-1
Authorization14-1
Session. .14-2
Termination. 14-2

15.

 Sample Sessions 15-1

16. Acknowledgments 16-1

17. Authors 17-1

18. References 18-1

Inde

x of Compliance Items 1-1

Index Index-1

Version 1.5 Second Edition

Real Estate Transaction Specification

iii

11.1

 Metadata Structure

 11-2

List of Figures

iv

Real Estate Transaction Specification

Version 1.5 Second Edition

Version 1.5 Second Edition

Real Estate Transaction Specification

v

3-1

General Status Codes

 3-7

4-1

Well-Known Names for Input Fields

 4-6

4-2

Capability URL Descriptions

 4-6

4-3

Valid Reply Codes for Login Transaction

 . . 4-7

5-1

GetObject Reply Codes

. 5-6

7-1

Search Transaction Reply Codes

. 7-10

9-1

Change Password Reply Codes

 9-2

10-1

Update Transaction Reply Codes

 10-4

11-1

Well-Known Resource Names

 11-4

11-2

Metadata: Resource Description Fields

. 11-6

11-3

Metadata Content: Foreign Keys

 11-9

11-4

Metadata Content: Resource Class

. . 11-11

11-5

Metadata Content - Tables

 11-13

11-6

Metadata Content – Update

. 11-16

11-7

Metadata Content – Update Type

 . . . 11-17

11-8

Well-known Object Types

 11-18

11-9

Metadata Content: Resource Object

 . 11-20

11-10

 Metadata Content: Lookup

. 11-21

11-11

 Metadata Content: Lookup Type

 . . . 11-22

11-12

 Metadata Content: Search Help

 . . . 11-23

11-13

 Metadata Content: Edit Mask

 11-24

11-14

 RETS Regular Expression Metacharacters

11-25

11-15

 Metadata Content: Update Help

 . . . 11-26

11-16

 Metadata Content: Validation Lookup

 11-27

11-17

 Metadata Conent: Validation Lookup Type

.
11-29

11-18

 Validation Expression Types

 11-29

11-19

 Validation Expression Operators . . . 11-30
11-20 Validation Expression Special Operand

Tokens 11-31
11-21 Metadata Content: Validation Expression .

11-32
11-22 Metadata Content: Validation External 11-33
11-23 Metadata Content: Validation External Type

11-35
12-1 GetMetadata Reply Codes 12-4
13-1 Compact Data Format Representation . 13-2

List of Tables

vi Real Estate Transaction Specification Version 1.5 Second Edition

Version 1.5 Second Edition 1-1

S E C T I O N

1
CHAPTER 0INTRODUCTION

1.1 Purpose

This specification is one of three documents defining the interchange of real estate
information. The purpose of this document is to define a specification for the exchange of
real estate property information, with the intent of eventually describing all
interchangeable aspects of a real estate transaction. It defines a standard interface by
which a client program may communicate with a property or other real estate data server.
The specification defines a protocol for implementing transactions, and incorporates an
Extensible Markup Language (XML) specification for general purpose interchange. The
specification also provides for a compressed data interchange format and specification to
allow interchange of machine-interpretable property information. This second document,
the Real Estate Transaction DTD, defines the general structure of the XML DTD that can
be used in transferring information from the server. Finally, this specification includes a
DTD describing the metadata exchanged by endpoints using RETS.

1.2 Scope

This specification is intended to define only the minimum a product or service must do in
order to be considered “compliant”. This specification is extensible and nothing in the
specification precludes a vendor from adding data or functionality over and above that
detailed here. However, when a function is provided or a data element is stored by a
compliant system, it must offer access to the function or mechanism in a way that
complies with the specification in order to be considered compliant.

1.3 Requirements

1.3.1 Required Features

This specification uses the same words as RFC 1123 [1] for defining the significance of
each particular requirement. These words are:

MUST This word or the adjective "required" means that the item is an
absolute requirement of the specification. A feature that the
specification states MUST be implemented is required in an
implementation in order to be considered compliant.

1-2 Real Estate Transaction Specification Version 1.5 Second Edition

SHOULD This word or the adjective “recommended” means that there may
exist valid reasons in particular circumstances to ignore this item,
but the full implications should be understood and the case
carefully weighed before choosing a different course. A feature
that the specification states SHOULD be implemented is treated
for compliance purposes as a feature that may be implemented.

MAY This word or the adjective "optional" means that this item is truly
optional. A feature that the specification states MAY be
implemented need not be implemented in order to be considered
compliant. However, if it is implemented, the feature MUST be
implemented in accordance with the specification.

An implementation is not compliant if it fails to satisfy one or more of the MUST
requirements for the protocols it implements. An implementation that satisfies all the
MUST and all the SHOULD requirements for its protocols is said to be “unconditionally
compliant”; one that satisfies all the MUST requirements but not all the SHOULD
requirements for its protocols is said to be “conditionally compliant.”

Client and server implementations should generally follow the Internet protocol
convention of being strict in what they generate, but tolerant in what they accept.
However, in cases where tolerance of deviations from the specification could result in an
incorrect interpretation of user data or intentions, implementers are urged to reject
transactions rather than supplying possibly-incorrect defaults.

1.3.2 Compatibility with Prior Versions

The RETS 1.5 specification supercedes previous versions of the RETS specification. There
is no requirement for a client or server that advertises itself as “compliant with RETS 1.5” to
interoperate with earlier versions. However, client and server implementers are urged to
support the prior version, RETS 1.0, in order to insure a smooth transition.

1.4 Terminology

Arguments Tag/value pairs passed to a transaction as part of the Argument-
List. The tag and the value are separated by an equal sign (“=”).

Argument-List All the tag/value pairs for a request are Transfer-Encoded (see
RFC 2616 [2]) and turned into a stream with each pair being
separated by an ampersand (“&”) character. The tag/value
stream is appended to the URI after a delimiting question mark
(“?”) for the GET method. The tag/value stream is sent as the
first entity body for the POST method.

Transfer-Encoding MUST be used to indicate any transfer
codings applied by an application to ensure safe and proper
transfer of the Argument-List.

The data and Arguments for a response are turned into a stream
with each data record and Argument being separated by a
carriage return/line feed.

Class A subset of data elements within a Resource that share common
metadata elements.

Version 1.5 Second Edition 1-3

Client The system requesting data. This may well be a server seeking to
update itself from another server. The specification does not
assume any particular kind of client.

Endpoint Either a server or client.

Metadata The set of data that describes data fields in detail.

Metadata Dictionary The set of data that describes the available Metadata. This is the
Meta-Metadata. It is used to determine the different classes of
accessible data on the server and does not describe the fields
within the those classes. It also defines what different types of
searches are available (tax, open house, etc.).

Object For purposes of RETS and its GetObject transaction, a collection
of octets treated as a unit and associated with a unique resource
element.

Optional A compliant server or client is not required to include any field
designated as optional. The specification states the action to be
taken by a compliant system in the absence of an optional field.
The fact that the specification designates a field as optional does
not mean that the recipient of a transaction that is missing
optional fields is required to provide all services that could be
required if the field were present.

Required A compliant server or client MUST include any field designated
as required. A transaction that does not include every required
field MUST be rejected by the recipient.

Resource A collection of data having the external appearance of belonging
to a single data base and being accessible for search or update via
RETS transactions.

Resource Element An individual record from a resource identified by a Resource
Key.

Resource Key The unique key that identifies a resource element.

Server The system providing data (also referred to as the "host").

Session ID A server-provided character string of up to 64 printable
characters that uniquely identifies a session to a server. The
contents are implementation-defined.

Request ID A client-provided character string of up to 64 printable characters
which uniquely identifies a request to a client. The contents are
implementation-defined.

Standard-Name The name of a data field as it is known in the Real Estate
Transaction XML DTD.

System-Name The name of a data field as it is known in the metadata.

1-4 Real Estate Transaction Specification Version 1.5 Second Edition

Version 1.5 Second Edition 2-1

S E C T I O N

2
CHAPTER 0NOTATIONAL CONVENTIONS

2.1 Augmented BNF

This document expresses message layouts and character sequences in an augmented
Backus-Naur Form (BNF) similar to that used by RFC 822 [4].

2.2 Typographic Conventions

Parsing constructs and examples are set in a monospaced font:

Server: Microsoft-IIS/4.0

In parsing constructs, textual elements that are required exactly as shown are indicated by
boldface type., while textual elements that represent placeholders for actual data are
indicated by a slanted font:

Server: server identifier

Entities designated by a textual definition contain that definition enclosed in angle
brackets:

<any 8-bit sequence of data>

Atoms and primitive entities are indicated by ITALIC CAPS:

1*64ALPHANUM

Three nonprinting characters also have significance in some RETS constructs. These may
be represented by special printing graphics:

→ Tab character, ASCII HT, an octet with a value of 9

↵ End of line

⋅ Space character, where needed for clarity.

2.3 Rules

The following rules are used throughout this specification to describe basic parsing
constructs. The US-ASCII coded character set is defined by ANSI X3.4-1986 [5].

Parsed entities are constructed combinations of atoms or other entities as defined below.
Atoms may be combined and repeated to form longer constructs. When there are

2-2 Real Estate Transaction Specification Version 1.5 Second Edition

constraints on the repetition of atoms, the constraints are expressed by a notation of the
form:

m * n

where both m and n are integers. m represents the minimum allowed number of
repetitions, and n represents the maximum. If m is omitted, it is presumed to be zero; if n
is omitted, it is presumed to be infinite. For example, the syntactic construct

1*64ALPHANUM

means a string of ALPHANUMs containing at least 1 and at most 64.

When a parsing construct is represented by a string of entities, some of which are
optional, the optional entities are enclosed in square brackets. For example, in the string

error-number [error-code]

the error-number entity is required, while the error-code entity is optional.

Alternation is indicated by the vertical bar. The entity description

ALPHA | DIGIT

means “either an ALPHA or a DIGIT”.

2.4 Atoms and Primitive Entities

OCTET ::= <any 8-bit sequence of data>

CHAR ::= <any US-ASCII character (octets 0 - 127)>

UPALPHA ::= <any US-ASCII uppercase letter "A".."Z">

LOALPHA ::= <any US-ASCII lowercase letter "a".."z">

ALPHA ::= UPALPHA | LOALPHA

DIGIT ::= <any US-ASCII digit "0".."9">

ALPHANUM ::= ALPHA | DIGIT

SQLFIELDNAME ::= ALPHA *31ALPHANUM <except ANSI SQL 92 reserved words>

IDALPHA ::= ALPHA *NALPHANUM

CTL ::= <any US-ASCII control character (octets 0 - 31) and DEL
(127)>

CR ::= <US-ASCII CR, carriage return (13)>

LF ::= <US-ASCII LF, linefeed (10)>

SP ::= <US-ASCII SP, space (32)>

HT ::= <US-ASCII HT, horizontal-tab (9)>

<"> or " ::= <US-ASCII double-quote mark (34)>

NULL ::= <no character>

CRLF or ↵ ::= CR LF

LWS ::= [CRLF] 1*(SP | HT)

HEX ::= "A" | "B" | "C" | "D" | "E" | "F" | "a" | "b" | "c" | "d" | "e" |
"f" | DIGIT

Version 1.5 Second Edition 2-3

LHEX ::= "a" | "b" | "c" | "d" | "e" | "f" | DIGIT

TEXT ::= <any OCTET except CTLs, but including LWS>

PLAINTEXT ::= <any OCTET except CTLs>

TSPECIALS ::= "(" | ")" | "<" | ">" | "@" | "," | ";" | ":" | "\" | <"> | "/" | "["
| "]" | "?" | "=" | "{" | "}" | SP | HT

TOKEN ::= 1*<any CHAR except CTLs or TSPECIALS>

QUOTED-STRING ::= (<"> *(QDTEXT) <">)

QDTEXT ::= <any TEXT except <">>

DATE ::= Date using the format defined in RFC 1123.

2-4 Real Estate Transaction Specification Version 1.5 Second Edition

Version 1.5 Second Edition 3-1

S E C T I O N

3
CHAPTER 0MESSAGE FORMAT

The Real Estate Transaction Specification is modeled on, and is compliant with HTTP/1.1.
This specification does not require the implementation of persistent connections as
defined in RFC 2616, however, it also does not preclude the use of them.

3.1 General Message Format

RETS messages consist of requests from a client to a server, answered by responses from
the server and returned to the client. RETS requests use the generic message format of
RFC 822, consisting of a start line, one or more header lines, an empty line, and zero or
more body lines. The body may be null, depending on the message.

RETS responses use an RFC 822 header, but the body format is selected as appropriate for
the content. For session control transactions such as Login (Section 4), the response body
is a well-formed XML document containing the response arguments. For other
transactions, the body may be MIME-encoded or may be a well-formed or valid XML
document.

As in RFC 822, keywords in key-value pairs are not case-sensitive. The values, however,
may be case-sensitive depending on context.

3.2 Request Format

Requests may take either of two forms. The form used is dependent on the Method. For
the POST Method the post-request form is used. For the GET Method the get-request
form is used. The major difference between the two forms is the location of the
Argument-List. In the case of the get-request the Argument-List is appended to the
Request-URI after a delimiting question mark (“?”). For the post-request the Argument-
List is sent as the first entity body for the POST method.

post-request ::=POST⋅Request-URI ⋅ HTTP-Version↵
*message-header
↵
[Argument-List]

get-request ::=GET⋅Request-URI [? Argument-List] ⋅HTTP-Version ↵
*message-header
CRLF

3-2 Real Estate Transaction Specification Version 1.5 Second Edition

The Request-URI, HTTP-Version and message-header are defined in RFC 2616.

3.3 Header Field Format

A header field consists of three elements: a field name, a colon (“:”), and a field value
followed by a CRLF. The field value may be preceded or followed by any amount of LWS,
though a single SP is preferred between the colon and the field value and no LWS is
preferred after the field value; the LWS is not interpreted as part of the field value. The
value itself may consist of any sequence of characters except CR or LF.

3.4 Required Client Request Header Fields

The header of any messages sent from the client MUST contain the following header
fields:

Accept This is a standard HTTP header field as defined in RFC 2616.
Except for the GetObject Transaction, this value should be set to
“*/*”.

Example: Accept: */*

See Section 5.1 for more information on this field.

User-Agent This header field contains information about the user agent
originating the request. This is for statistical purposes, the tracing
of protocol violations, and automated recognition of user agents
for the sake of tailoring responses to avoid particular user agent
limitations, as well as providing enhanced capabilities to some
user-agents. All client requests MUST include this field. This is a
standard HTTP header field as defined in RFC 2616.

User-Agent ::= User-Agent: ⋅ product

product ::= token [/ product-version]

product-version::= token

Example: User-Agent: MLSWindows/4.00

Product tokens should be short and to the point: use of them for advertising or other non-
essential information is explicitly forbidden. Although any token character may appear in
a product-version, this token SHOULD only be used for a version identifier (i.e.,
successive versions of the same product SHOULD only differ in the product-version
portion of the product value). For more information about User-Agent see RFC 2616.

A server MAY advertise additional capabilities based on the client’s User-Agent, and
MAY refuse to proceed with the authorization if an acceptable User-Agent has not been
supplied. A server MAY also choose to authenticate the client’s identity cryptographically
using RFC 2617; see Section 4.1, “Security” on page 1 for additional information.

RETS-Version The client MUST send the RETS-Version. The convention used is
a “<major>.<minor>” numbering scheme similar to the HTTP
Version in Section 3.1 of RFC 2616. The version of a RETS
message is indicated by a RETS-Version field in header of the
message.

Version 1.5 Second Edition 3-3

3.5 Optional Client Request Header Fields

Authorization Authorization header field as defined in RFC 2617. See 4.1,
“Security”, as well as RFC 2617, for additional information.

Cookie The implementation of this specification is intended to create a
stateless system; however, because the user is required to log in
there are at least two states. The Cookie mechanism MAY be used
to provide a mechanism that can ensure that there are not
multiple simultaneous sessions with a single username/
password, if required by the server, and also to provide an added
level of security. A new RETS-Session-ID cookie MAY be issued
by the server at Login (see Section 4.5). This MUST be saved by
the client application and sent in the client’s HTTP request
header as "Cookie: RETS-Session-ID=" to all subsequent
requests. The RETS-Session-ID SHOULD be set to '0' for the
initial Login.

cookie ::= RETS-Session-ID= session-id

session-id ::= 1*64ALPHANUM

Example: Cookie: RETS-Session-ID= AE872BC1DDFE7880DAD31233

RETS-Request-ID A character string of printable characters which the client can use
to identify this request. The contents are implementation-defined.
If this field is included in a request from the client then the server
MUST return it in the response.

RETS-Request-ID ::= 1*64ALPHNUM

Accept-Encoding A comma-separated list of MIME types indicating the content
encoding schemes that the client is willing to accept. This is
intended to support the use of compression in data returns; see
section 3.9 for additional information.

Accept-Encoding ::= 1*64ALPHNUM/1*64ALPHNUM[,1*64ALPHNUM/1*64ALPHNUM…]

3.6 Response Format

The general server response to a request includes a Status-Line, one or more header-
lines, a CRLF and a reply body. The Status-Line of a response consists of a status code
and a (possibly empty) reason phrase.

server-reply ::= Status-Line
4*header-line
CRLF
[body-start-line
response-body
rets-status
body-end-line]

Status-Line ::= HTTP-Version ⋅Status-Code ⋅ Reason-Phrase CRLF

Status-Code ::= 1*4DIGIT

3-4 Real Estate Transaction Specification Version 1.5 Second Edition

The list of allowable Status-Codes can be found in RFC 2616. The more useful Status-
Codes are provided in Section 3.10. Servers MUST use appropriate predefined status
codes when communicating with the client. When an error is encountered a client MAY
display both the status code and the associated Reason-Phrase in its communication with
the user.

The Status-Code is intended to provide HTTP level errors to the client (Authorization,
URI, etc.). Software level errors (search queries, invalid argument values, etc.) should be
returned in the reply-code.

Reason-Phrase ::= *<TEXT, excluding CR/LF>

body-start-line ::= <RETS 1*SP ReplyCode= quoted-reply-code 1*SP
ReplyText= quoted-string *SP> CRLF

If a body is returned in the response then the body-start-line MUST be returned.

response-body ::= {key-value-body | data} CRLF

key-value-body ::= <RETS-RESPONSE>CRLF*(key = value CRLF)
</RETS-RESPONSE>

rets-status ::= <RETS-STATUS [1*SP ReplyCode=quoted-end-reply-code
1*SP ReplyText=quoted-string *SP]/> CRLF

The rets-status MAY be included in the response if the ReplyCode or ReplyText given
in the body-start-line becomes invalid during the creation of the response. If the server
includes a rets-status in its reply, the client MUST use the ReplyCode and ReplyText
from the rets-status rather than from the body-start-line.

body-end-line = </RETS> CRLF

If a body-start-line is returned in the response then the body-end-line MUST also be
returned.

quoted-reply-code::= "1*5DIGITS"

The reply-code is included to provide a mechanism to pass additional information to the
client in the event that the request is processed OK (Status-Code = 200) but some
condition still exist that may require an action by the client. A value of '0' indicates
success. Applicable reply-codes can be found under specific transactions.

quoted-end-reply-code= "1*5DIGITS"

The end-reply-code is included to provide a mechanism to pass additional information
to the client in the event that the request being processed by the server errors before the
request has been completed. This allows the server to start streaming out data before it
has completed processing the request. A value of '0' indicates success, however the server
SHOULD only send an end-reply-code if there is an error.

The valid <key>, <value> and <data> elements are defined in the Response Arguments
section for each transaction.

An example server-reply where the reply body consists of key-value pairs:

HTTP/1.1 200 OK
Server: Microsoft-IIS/4.0
Date: Sat, 20 Mar 2002 12:03:38 GMT
Content-Type: text/xml
Cache-Control: private
RETS-Version: RETS/1.5

Version 1.5 Second Edition 3-5

<RETS ReplyCode="0" ReplyText="SUCCESS">
<RETS-RESPONSE>
Key1=Value1
Key2=Value2
</RETS-RESPONSE>
</RETS>

3.7 Required Server Response Header Fields

The header of any messages sent from the server MUST contain the following header
fields:

Date The server MUST send the date using the format defined in RFC
1123. This is a standard HTTP header field as defined in RFC
2616.

Example: Date: Sat, 20 Mar 1999 12:03:38 GMT

The date/time stamp MUST be represented in Greenwich Mean
Time (GMT), without exception.

Cache-Control The RFC 2616 standard general-header field is used to specify
directives that MUST be obeyed by all caching mechanisms along
the request/response chain. The directives specify behavior
intended to prevent caches from adversely interfering with the
request or response. This field SHOULD be set to "private" for all
transaction in this specification.

Example: Cache-Control: private

Content-Type This is a standard HTTP header field as defined in RFC 2616. It
specifies the media type of the underlying data. The server MUST
return this field in all replies. For most replies this will be set to
"text/xml". See Section 5.5 in the GetObject Transaction for
exceptions and more information on this field.

Example: Content-Type: text/plain

RETS-Version The server MUST send the RETS-Version. The convention used is
a “<major>.<minor>” numbering scheme similar to the HTTP
Version in Section 3.1 of RFC 2616. The version of a RETS
message is indicated by a RETS-Version field in header of the
message.

RETS-Version ::= RETS-Version: version-info

version-info ::= RETS/ 1*DIGIT . 1*DIGIT

Example: RETS-Version: RETS/1.5

Applications sending request or response messages, as defined by this specification,
MUST include a RETS-Version of "RETS/1.5". Use of this version number indicates that
the sending application is compliant with this specification.

3.8 Optional Server Response Header Fields

Content-Length The Content-Length entity-header field indicates the size of the
message-body, in decimal number of octets. This is a standard

3-6 Real Estate Transaction Specification Version 1.5 Second Edition

header field defined in RFC 2616 and is required for all requests
containing a message-body not using Chunked transfer
encoding.

Transfer-Encoding The Transfer-Encoding entity-header field when set to the
Chunked value, indicates the size of the message-body is in the
chunk stream. This is a standard header field defined in RFC
2616 and is required for all responses with a body not using
Content-Length or a Content-Type: Multipart response.

Content-Encoding The Content Encoding entity-header field MAY be returned by
the server if the client has included an AcceptEncoding header in
its request () indicating that it can accept one or more
compression types supported by the server. It is recommended
that servers accept at least application/gzip (see 3.9, “Data
Compression in RETS Transactions”).

Content-Encoding::= 1*64ALPHANUM / 1*64ALPHANUM

RETS-Request-ID The contents of the RETS-Request-ID field, if any, sent by the
client in the request. If a RETS-Request-ID is included in a
request from the client then the server MUST return it in the
response.

RETS-Request-ID ::= 1*64ALPHNUM

Server The server standard response-header field contains information
about the software used to handle the request. The format of this
field is the same as the User-Agent field in Section 3.4.

Example: Server: Microsoft-IIS/4.0

3.9 Data Compression in RETS Transactions

Clients and servers may choose to support data compression in data returned from the
server. To indicate its willingness to accept compressed data, a client includes an
Accept-Encoding header in its request. If the server supports one of the compression
methods accepted by the client, it can include a Content-Encoding header in its response
indicating the compression method it has chose.

Clients and servers choosing to implement compression SHOULD at least support GZip
compression. This method is implemented by freely-available source code in a number of
languages, as well as in several proprietary software development environments. A
second freely-available alternative is BZIP. Clients and servers are free to choose other
encoding methods as well.

Version 1.5 Second Edition 3-7

3.10 General Status Codes

Any of the following status codes (in addition to the others provided in RFC 2616) may be
returned by a server in response to any request:

Table 3-1 General Status Codes

Status Meaning

200 Operation successful.
400 Bad Request

The request could not be understood by the server due to malformed
syntax.

401 Not Authorized
Either the header did not contain an acceptable Authorization or the
username/password was invalid. The server response MUST include a
WWW-Authenticate header field.

402 Payment Required
The requested transaction requires a payment which could not be
authorized.

403 Forbidden
The server understood the request, but is refusing to fulfill it.

404 Not Found
The server has not found anything matching the Request-URI.

405 Method Not Allowed
The method specified in the Request-Line is not allowed for the resource
identified by the Request-URI.

406 Not Acceptable
The resource identified by the request is only capable of generating
response entities which have content characteristics not acceptable
according to the accept headers sent in the request.

408 Request Timeout
The client did not produce a request within the time that the server was
prepared to wait.

411 Length Required
The server refuses to accept the request without a defined Content-
Length.

412 Precondition Failed
Transaction not permitted at this point in the session

413 Request Entity Too Large
The server is refusing to process a request because the request entity is
larger than the server is willing or able to process.

414 Request-URI Too Long
The server is refusing to service the request because the Request-URI is
longer than the server is willing to interpret. This error usually only
occurs for a GET method.

500 Internal server error.
The server encountered an unexpected condition which prevented it
from fulfilling the request.

501 Not Implemented
The server does not support the functionality required to fulfill the
request.

503 Service Unavailable
The server is currently unable to handle the request due to a temporary
overloading or maintenance of the server.

505 HTTP Version Not Supported
The server does not support, or refuses to support, the HTTP protocol
version that was used in the request message.

3-8 Real Estate Transaction Specification Version 1.5 Second Edition

HTTP error status returns are only to be used for system level, transport syntax, and
invalid transaction errors. RETS error status codes are used to indicate errors in the
request arguments or the transaction processing.

Version 1.5 Second Edition 4-1

S E C T I O N

4
CHAPTER 0LOGIN TRANSACTION

A client MUST issue a login request prior to proceeding with any other request. The Login
Transaction verifies all login information provided by the user and begins a RETS session.
Subsequent session control may be mediated by HTTP cookies or any other method,
though clients are required to support at least session control via HTTP cookies. Section 14
describes the session protocol in detail.

The server’s response to the Login transaction contains the information necessary for a
client to issue other requests. It includes URLs that may be used for other RETS requests,
and may also contain identity and parameter information if required by the functions
supported by the server.

4.1 Security

4.1.1 User Authentication

While this specification does not require the use of security — it permissible, for example,
to operate a publicly-accessible RETS server — most operators of RETS servers will wish
to authenticate users. A server that requires that users be authenticated MAY implement
RFC 2617, HTTP Authentication. The use of at least digest authentication is strongly
recommended.

4.1.2 Client Authentication

Some RETS servers may wish to authenticate the client application in addition to the user.
This is provided for in RFC 2617 by the use of a qop value of auth or auth-int in the
server’s WWW-Authenticate header and the corresponding cnonce value in the client’s
Authorization header. A compliant RETS server MAY require that the client respond
with a non-null qop value if the server has included a qop in its WWW-Authenticate
header. However, this is a matter of server policy, not compliance: a client that merely
complies with RFC 2617, which states that qop is optional in the Authorization header, is
still considered compliant with this specification.

A RETS-compliant client can authenticate itself to a server though the use of a shared
secret that becomes part of the computation of the RFC 2617 cnonce. The cnonce value is
computed as

cnonce ::= H(User-Agent : Client-Password : RETS-Request-ID : nonce))

4-2 Real Estate Transaction Specification Version 1.5 Second Edition

where user-agent is the value of the User Agent string (Section 3.4), client-password is
the agreed shared secret, RETS-request-ID is the value of the RETS Request ID sent with
this transaction (if one is used; see section 3.5), and nonce is the value of the nonce sent by
the server in the last WWW-Authenticate header. If the client has not used a RETS Request
ID, the value for computation of the cnonce should be the null string.

4.1.3 Data Security

Needs for secure HTTP transactions cannot be met by authentication schemes. For those
needs, SSL or SHTTP are more appropriate protocols. A compliant server MAY support
only HTTP-over-SSL. In this case, the server SHOULD listen on port 12109 rather than the
standard RETS port, 6103.

4.2 Authorization Example

The following example assumes that a client application is trying to access the Login URI
on the server using the POST method, and without using client authentication. The URI is
“http://www.TheSite.com/login”. Both client and server know that the username is
“joesmith”, and the password is “SuperAgent”. The example also assumes the use of
authentication using RFC 2617.

The first time the client requests the document, no Authorization header is sent, so the
server responds with:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest realm="Users@TheSite.com",
nonce="dcd98b7102dd2f0e8b11d0f600bfb0c0"
opaque="5ccdef346870ab04ddfe0412367fccba"

The client may prompt the user for the username and password, after which it will
respond with a new request, including the following Authorization header:

Authorization: Digest username=“joesmith”,
realm=“Users@TheSite.com”,
nonce=“dcd98b7102dd2f0e8b11d0f600bfb0c0”,
opaque=“5ccdef346870ab04ddfe0412367fccba”,
uri=“/login",
response=“13258d9b0bc217c9502b47e32dff8ee9”

4.3 Required Request Arguments

There are no required request arguments.

4.4 Optional Request Arguments

4.4.1 BrokerCode Argument

brokerCodeArgument ::= BrokerCode = broker-code , [broker-branch]

Some servers may support the scenario where a user belongs to multiple brokerages. If
this is the case then the broker information (broker-code and broker-branch) must be
input during login. If they are not included then the list of broker codes/branches is
passed back to the client application through the response along with a “20012 Broker
Code Required” reply-code.

Version 1.5 Second Edition 4-3

broker-code ::= 1*24ALPHANUM

broker-branch ::= 1*24ALPHANUM

4.5 Optional Response Header Fields

In addition to the other Optional Server Response Header Fields specified in Section 3.5
the following response header field MAY be sent.

Note: Clients,
but not servers,
are required to

implement
cookie

handling.

Set-Cookie The use of the Set-Cookie is required to provide a mechanism
that, if required by the server, can guarantee that there are not
multiple simultaneous sessions with a single username/
password and also to provide an added level of security. A new
RETS-Session-ID cookie is issued by the server at Login. This
MUST be saved by the client application and sent in the HTTP
header of any subsequent client requests during the session as
“Cookie: RETS-Session-ID=”.

Set-Cookie ::= RETS-Session-ID= session-id SP path=/

session-id ::= 1*64ALPHANUM

Example: Set-Cookie: RETS-Session-ID=AY872YOPOIPPOIP7880;
path=/

Any server implementations that do not require the use of Session IDs should set the
session-id in the response to '0'.

4.6 Login Response Body Format

The body of the login response has three basic formats when replying to a request. The
simplest form is when there is an error:

<RETS 1*SP ReplyCode= quoted-reply-code 1*SP
ReplyText= quoted-string *SP /> CRLF

The second case is where the user belongs to more than one broker and they have not
provided broker information as part of the login. The reply contains a list of all brokerages
the user belongs to.

<RETS ReplyCode = 20012 1*SP ReplyText = quoted-string *SP > CRLF
2*(Broker = broker-code [, broker-branch] CRLF)
</RETS> CRLF

The third case is the normal “OK” response. In this case several arguments are passed
back to the client in the response.

<RETS 1*SP ReplyCode= quoted-reply-code 1*SP
ReplyText= quoted-string *SP > CRLF

<RETS-RESPONSE> ↵
member-name-key
user-info-key
broker-key
metadata-ver-key
min-metadata-ver-key
[office-list-key]
[balance-key]
[timeout-key]
[pwd-expire-key]
capability-url-list
</RETS-RESPONSE> ↵
[<RETS-STATUS [1*SP ReplyCode= quoted-end-reply-code 1*SP ReplyText=

4-4 Real Estate Transaction Specification Version 1.5 Second Edition

quoted-string *SP]/>
</RETS> CRLF

4.7 Required Response Arguments

4.7.1 Broker

broker-key ::= Broker = broker-code [, broker-branch] CRLF

Broker information for the logged in user is returned to the client.

broker-code ::= 1*24ALPHANUM

broker-branch ::= 1*24ALPHANUM

These parameters are used in the validation routines of the Update Transaction (see
Section 10 for more information).

4.7.2 Member Name

member-name-key ::= MemberName = member-name CRLF

The member's full name (display name) as it is to appear on any printed output.

member-name ::= 1*48TEXT

4.7.3 Metadata Version Information

The metadata version keys indicate the current and minimum-acceptable versions of
metadata.

metadata-ver-key::= MetadataVersion = new-metadata-version CRLF

This is the most current version of the metadata that is available on the server.

metadata-version ::=1*2DIGITS . 1*2DIGITS [. 1*5DIGITS]

It uses a “<major>.<minor>.<release>” numbering scheme.

min-metadata-ver-key::= MinMetadataVersion = min-metadata-version CRLF

This is the minimum version of the metadata that the host will support. If the version of
the metadata being used by the client is less than this version the client MUST retrieve the
newer metadata from the host.

min-metadata-version::=1*2DIGITS . 1*2DIGITS [. 1*5DIGITS]

It uses a “<major>.<minor>.<release>” numbering scheme.

The definition of the minumum version of the metadata is to permit clients to ignore non-
essential changes to components such as help text and user-readable descriptions.

4.7.4 User information

user-info-key ::= User = user-id , user-level , user-class ,
agent-code CRLF

This key contains basic information about the user that is stored on the server. If a server
does not support one of these fields then it MUST set the returned value to NULL.

Version 1.5 Second Edition 4-5

user-id ::= 1*30ALPHANUM

user-class ::= 1*30ALPHANUM

user-level ::= 1*5DIGIT

agent-code ::= 1*30ALPHANUM

The agent-code is the code that is stored in the property records for the listing agent,
selling agent, etc. In some implementations this may be the same as the user-id. The fields
user-class and user-level are implementation dependent and may not exist on some
systems, in which case, a value of NULL should be returned. These parameters are used in
the validation routines of the Update Transaction (see Section 10 for more information).

4.7.5 Capability URL List

capability-url-list::= see Section 4.10 for format information

The server MUST return a capability list that includes at least a Search URL. The server
MAY in addition return any of the other types in Section 4.10. If the server supports any of
the additional functions (and the client is entitled to access the function by virtue of the
supplied login information), it MUST provide URLs for those functions. The server MAY
supply URLs in addition to those in Section 4.10 based on the user-agent. If it does, it
MUST follow the format specified in Section 4.10.

4.8 Optional Response Arguments

4.8.1 Accounting Information

balance-key ::= Balance = balance CRLF

If the server supports an active billing account then this value SHOULD represent a user-
readable indication of the money balance in the account.

balance ::= 1*32ALPHANUM

4.8.2 Access Control Information

timeout-key ::= TimeoutSeconds = 1*5DIGIT

The number of seconds after a transaction that a session will remain alive, after which the
server will terminate the session automatically (e.g. invalidate the session-id). This is
commonly referred to as the inactivity timeout. A server need not provide this capability;
however, if it does use session timeouts in order to prevent monopolization of resources,
it MUST inform the client of the timeout interval by returning this response field.

pwd-expire-key ::= Expr = pwd-expr , expr-warn-per CRLF

Indicates when a users password will expire. The parameter pwd-expr is a date in RFC
1123 format. And expr-warn-per is the number of days (1*3DIGIT) prior to expiration that
the user should be warned of the upcoming password expiration. A expr-warn-per value
of (-1) indicates that the password expiration is disabled.

4-6 Real Estate Transaction Specification Version 1.5 Second Edition

4.8.3 Office List Information

office-list-key ::= OfficeList = broker-code [; broker-branch]
*(, broker-code [; broker-branch]) CRLF

If the logged in user is a company owner or manager they may have rights to login to
multiple offices. The office-list-key is an enumeration of the offices to which the
server will permit login.

broker-code ::= 1*24ALPHANUM

broker-branch ::= 1*24ALPHANUM

4.9 Well-Known Names

Some fields returned from the login are considered “Well-Known” and are used in the
validation routines of the Update transaction. Those fields are as follows:

The client MUST assume a blank value for any well-known name for which the server
does not supply an input field.

4.10 Capability URL List

The capability-url-list is the set of functions or URLs to which the login grants access. A
capability consists of a key and a URL. The list returned from the server in the login reply
has the following format:

[Action = action-URL CRLF]
[ChangePassword = change-password-URL CRLF]
[GetObject = get-object-URL]
Login = login-URL CRLF
[LoginComplete = login-complete-URL CRLF]
[Logout = logout-URL CRLF]
Search = search-URL CRLF
GetMetadata = get-metadata-URL CRLF
[Update = update-URL CRLF]

Table 4-1 Well-Known Names for Input Fields

Well-Known name Input Return Field

.USERID. user-id

.USERCLASS. user-class

.USERLEVEL. user-level

.AGENTCODE. agent-code

.BROKERCODE. broker-code

.BROKERBRANCH. broker-branch

Table 4-2 Capability URL Descriptions

Parameter Purpose

Action-URL A URL on which the client MUST perform a GET
immediately after login. This might include a bulletin or the
notification of email. The client application SHOULD
provide a means for the user to view the retrieved document.

Change-password-URL A URL for the ChangePassword Transaction.
get-metadata-URL A URL for the Get Metadata Transaction.
get-object-URL A URL for the Get Object Transaction.

Version 1.5 Second Edition 4-7

The URLs in the capability-url-list may be specified in any order. In addition, the table is
extensible; servers may define additional transactions for clients to access. If a transaction
is offered only to particular user agents, the keys for those additional transactions MUST
begin with the user-agent token, followed by a dash “-”, followed by an implementation-
defined function name.

additional-transaction::= user-agent-token - function-name

user-agent-token ::= token portion of the user-agent (Section 3.4)

function-name ::= 1*ALPHA

Example: MLSWindows-special = /special_function

A compliant client need not recognize any transaction that is not included in this
specification. If some extended transactions are offered to any user-agent, the keys for
those transactions MUST begin with an “X” followed by a dash, followed by an
implementation-defined function name. Server implementers who implement potentially-
unrestricted extension transactions are urged to register their keys and service
descriptions on the RETS web site to encourage wider adoption.

URLs may either be absolute or relative. Any URL beginning with a “ / ” is considered to
be relative and is relative to the Login-URL.

URLs MUST be URL-encoded per RFC 2396.

4.11 Reply Codes

Login-URL A URL for the Login Transaction. The client software should
use this URL the next time it performs a Login. If this URL is
different that the one currently stored by the client the client,
MUST update the stored one to the new one. This provides a
mechanism to move the Login server.

Login-complete-URL RESERVED
Logout-URL A URL for the Logout Transaction.
Search-URL A URL for the Search Transaction.
Update-URL A URL for the Update Transaction.

Table 4-2 Capability URL Descriptions

Parameter Purpose

Table 4-3 Valid Reply Codes for Login Transaction

Reply Code Meaning

0 Operation successful.
20003 Zero Balance

The user has zero balance left in their account.
20004 thru 20011 RESERVED
20012 Broker Code Required

The user belongs to multiple broker codes and one must be supplied
as part of the login. The broker list is sent back to the client as part of
the login response (see section 4.6).

20013 Broker Code Invalid
The Broker Code sent by the client is not valid or not valid for the user

20014 thru 20019 RESERVED

Note: RETS
does not

require that a
server maintain
user accounts.

4-8 Real Estate Transaction Specification Version 1.5 Second Edition

20022 Additional login not permitted
There is already a user logged in with this user name, and this server
does not permit multiple logins.

20036 Miscellaneous server login error
The quoted-string of the body-start-line contains text that SHOULD be
displayed to the user

20037 Client password invalid.
The server requires the use of a client password (section 4.1.2), and the
client either did not supply the correct client password or did not
properly compute its challenge response value.

20050 Server Temporarily Disabled
The server is temporarily offline. The user should try again later

Table 4-3 Valid Reply Codes for Login Transaction (continued)

Reply Code Meaning

Version 1.5 Second Edition 5-1

S E C T I O N

5
CHAPTER 0GETOBJECT TRANSACTION

The GetObject transaction is used to retrieve structured information related to known
system entities. It can be used to retrieve multimedia files and other key-related
information. Objects requested and returned from this transaction are requested and
returned as MIME media types. The message body for successful retrievals contains only
the objects in the specified MIME media type. Error responses follow the normal response
format (section 3.10).

5.1 Required Client Request Header Fields

In addition to the Required Client Request Header Fields specified in Section 3.4, the
header of any messages sent from the client MUST contain the following header fields:

Accept The client MUST request a media <type> using the standard
HTTP Accept header field. Media-type formats (subtypes) are
registered with the Internet Assigned Number Authority (IANA)
and use a format outlined in RFC 2045 [8]. When submitting a
request the client MUST specify the desired type and format. If
the server is unable to provide the desired format it SHOULD
return a “406 Not Acceptable” status. However, if there are no
objects of any <subtype> available for the requested object the
server SHOULD return “404 Not Found.” The format of the
Accept field is as follows:

Accept ::= Accept: type / subtype [; parameter]
*(, SP type / subtype [; parameter])

type ::= * | text | image | audio | video

subtype ::= * | <A publicly-defined extension token that
has been registered with IANA>

parameter ::= q = < qvalue scale from 0 to 1 >

A compliant server MUST support at least text/plain, text/xml and, if images are
supported, image/jpeg. The more common <types> and <subtypes> are as follows:

text/plain image/gif

text/xml image/jpeg

5-2 Real Estate Transaction Specification Version 1.5 Second Edition

A more complete list is available at:

ftp.isi.edu/in-notes/iana/assigments/media-types

The qvalue is used to specify the desirability of a given media type/format, with “1”
being the most desirable, “0” being the least desirable, and a range in between. The
default qvalue is “1”.

Example: Accept: image/jpeg, image/tiff;q=0.5,
image/gif;q=0.1

Verbally, this would be interpreted as “image/jpeg is the preferred media type, but if that
does not exist, then send the image/tiff entity, and if that does not exist, send the image/
gif entity.”

The types supported by the server are defined in the Metadata Dictionary as defined in
section 11.4.1.

5.2 Optional Client Request Header Fields

The GetObject transaction has no optional request header fields.

5.3 Required Request Arguments

Resource <A Resource defined in the metadata Dictionary (see Section
11.2.2)>

The resource from which the object should be retrieved is specified by this entry. For more
information see 5.9 . The Resource MUST be a resource defined in the metadata (section
11.4.1).

Type ::= <A type defined in the metadata (see Section 11.4.1)>

The grouping category to which the object belongs. The Type MUST be an ObjectType
defined in the Object metadata for this Resource. For more information see section 11.4.1.

ID ::= resource-set *(, resource-set)

resource-set ::= resource-entity [: object-id-list]

resource-entity ::= 1*ALPHANUM

object-id-list ::= object-id *(: object-id)

object-id ::= 1*ALPHANUM

The identity of the object. For objects, the resource-entity is a value (e.g., MLS number,
AgentID) from the KeyField of the Resource for which the object is to be retrieved.

The object-id is the particular object to be retrieved. This parameter MUST be numeric;
objects are assumed to be stored sequentially on the host beginning with an object-id of
“1”. If the object-id is 0 (zero or not provided), the designated preferred object of the given
type is returned. If the object-id is set to “*” then all objects corresponding to the resource-

text/html image/tiff

video/mpeg audio/basic

video/quicktime

Version 1.5 Second Edition 5-3

entity are returned. This parameter can be used to specify the photo number e.g. a value of
“3” would indicate photo number 3.

Note: If multiple resource-entities or object-ids are sent then the host MUST respond with
a multipart MIME response.

5.4 Optional Request Arguments

5.4.1 Location

Location 0| 1

This parameter indicates whether the object or a URL to the object should be returned.
This is used to provide access to the semi-permanent storage location of information for
access outside of the transaction (e.g. for use in email to a customer). If this parameter is
set to “1” the server MAY return a URL to the given object. The default is “0”. The server
MAY support this functionality (Location=“1”) but MUST support Location=“0”. In other
words, some servers may store the objects in a database or generate them dynamically.
Therefore, it may not be possible for those servers to return a URL to the requested object.
In these cases the server MAY choose not to support Location=“1”. However, all servers
MUST support a method to get the object and therefore, MUST support the case where
Location=“0”.

5.5 Required Server Response Header Fields

In addition to the other Required Server Header Fields specified in Section 3.7 the
following response header fields are required.

Content-Type The media type of the underlying data. The server MUST return
this field in all replies. Additionally, this field MUST be returned
as part of the header for each body part. This field MUST be set to
the type of media returned. See Section 5.1 for more information
on <type> and <subtype>.

Content-Type ::= Content-Type: type /subtype

Example: Content-Type: image/jpeg

If the client has requested multiple IDs, the server MAY return a multipart message. If it
does, it MUST return a Content-Type of “multipart/parallel” along with a boundary
delimiter in the response header. See Section 5.11 for more information on multipart
responses.

Example: Content-Type: multipart/parallel; boundary=AAABBBCCC

headerContent ID An ID for the object. This field MUST be returned as part of the
header for each body part in a multipart response.

Content-ID ::= Content-ID: *64<TEXT, EXCLUDING CR/LF>

Example: Content-ID: 123456

headerObject-ID The object number being returned. This field MUST be returned
as part of the header for each body part in a multipart response.

Object-ID ::= Object-ID: 1*5DIGIT

5-4 Real Estate Transaction Specification Version 1.5 Second Edition

Example: Object-ID: 2

headerMIME-Version All responses MUST include a MIME-Version of “1.0” in the
response header.

Example: MIME-Version: 1.0

5.6 Optional Server Response Header Fields

In addition to the other Optional Server Header Fields specified in Section 3.8 the
following response header fields are also optional.

5.6.1 Location

Location If the client has submitted a request with “Location=1” the
header of the response MUST contain the Location header field.
If the server does not support this functionality then “Location:”
without a URI should be returned.

Location ::= Location: URL

Example: Location: http://www.TheSite.com/pic/123456.jpg

5.6.2 Description

headerDescription A text description of the object.

Description ::= Content-Description: *64<TEXT, EXCLUDING CR/LF>

Example: Content-Description: Front View

5.7 Required Response Arguments

There are no required response arguments.

5.8 Optional Response Arguments

There are no optional response arguments.

5.9 Metadata

To retrieve objects the client MAY first retrieve the metadata that describes the Resources
and Objects that are available with the GetMetadata transaction described in section 12. A
full description of the Metadata Dictionary is provided in Section 11.

5.10 Resources

RETS does not require that any particular type of data be made available by a server.
However, a server MUST use a standard well-known name under which to make its data
available if a suitable well-known name is defined in the standard.

Version 1.5 Second Edition 5-5

5.11 Multipart Responses

In the case where the client has requested multiple IDs, the server MUST return a
multipart response. In the case of multipart responses, in which one or more different sets
of data are combined in a single body, a “multipart” media type field must appear in the
entity's header. The body must then contain one or more body parts, each preceded by a
boundary delimiter line, and the last one followed by a closing boundary delimiter line.
After its boundary delimiter line, each body part then consists of a header area, a blank
line, and a body area.

The Content-Type field for multipart entities requires one parameter, “boundary”. The
boundary delimiter line is then defined as a line consisting entirely of two hyphen
characters (“-”, decimal value 45) followed by the boundary parameter value from the
Content-Type header field, optional linear whitespace, and a terminating CRLF.

The CRLF preceding the boundary delimiter line is conceptually attached to the boundary
so that it is possible to have a part that does not end with a CRLF (line break). Body parts
that must be considered to end with line breaks, therefore, must have two CRLFs
preceding the boundary delimiter line, the first of which is part of the preceding body
part, and the second of which is part of the encapsulation boundary.

The boundary delimiter MUST NOT appear inside any of the encapsulated parts, on a line
by itself or as the prefix of any line. It must be no longer than 70 characters, not counting
the two leading hyphens. Because boundary delimiters must not appear in the body parts
being encapsulated, a user agent must exercise care to choose a unique boundary
parameter value. The boundary parameter value in the example above could have been
the result of an algorithm designed to produce boundary delimiters with a very low
probability of already existing in the data to be encapsulated without having to prescan
the data.

The boundary delimiter line following the last body part is a distinguished delimiter that
indicates that no further body parts will follow. Such a delimiter line is identical to the
previous delimiter lines, with the addition of two more hyphens after the boundary
parameter value.

Example:

HTTP/1.1 200 OK
Server: Microsoft-IIS/4.0
Date: Sat, 22 OCT 2000 12:03:38 GMT
Cache-Control: private
RETS-Version: RETS/1.0
MIME-Version: 1.0
Content-type: multipart/parallel; boundary="simple boundary"

--simple boundary
Content-Type: image/jpeg
Content-ID: 123456
<binary data>
--simple boundary
Content-Type: image/jpeg
Content-ID: 123457
<binary data>

--simple boundary--

5-6 Real Estate Transaction Specification Version 1.5 Second Edition

5.12 Reply Codes

Table 5-1 GetObject Reply Codes

Reply Code Meaning

20400 Invalid Resource
The request could not be understood due to an unknown resource.

20401 Invalid Type
The request could not be understood due to an unknown object type
for the resource.

20402 Invalid Identifier
The identifier does not match the KeyField of any data in the resource.

20403 No Object Found
No matching object was found to satisfy the request.

20406 Unsupported MIME type
The server cannot return the object in any of the requested MIME
types.

20407 Unauthorized Retrieval
The object could not be retrieved because it requests an object to
which the supplied login does not grant access.

20408 Resource Unavailable
The requested resource is currently unavailable.

20409 Object Unavailable
The requested object is currently unavailable.

20410 Request Too Large
No further objects will be retrieved because a system limit was
exceeded.

20411 Timeout
The request timed out while executing

20412 Too many outstanding requests
The user has too many outstanding requests and new requests will not
be accepted at this time.

20413 Miscellaneous error
The server encountered an internal error.

Version 1.5 Second Edition 6-1

S E C T I O N

6
CHAPTER 0LOGOUT TRANSACTION

The Logout transaction terminates a session. Except in cases where connection failure
prevents it or the user has requested an immediate shutdown of the client, the client
SHOULD send the Logout transaction. If the client sends a Logout transaction, the server
MUST attempt to send a response before terminating the session.

The server MAY send accounting information back to the client in the response to this
transaction. The client is not required to display or otherwise process the accounting
information.

6.1 Required Request Arguments

There are no required request arguments.

6.2 Optional Request Arguments

There are no optional request arguments.

6.3 Required Response Arguments

There are no required response arguments.

6.4 Optional Response Arguments

ConnectTime The amount of time that the client spent connected to the server,
specified in seconds.

ConnectTime ::= 1*9DIGITS

Billing If the server supports an active billing account, this is total
amount billed for this session, specified as TEXT which is
implementation-defined

Billing ::= *<TEXT, EXCLUDING CR/LF>

SignOffMessage Any text. The client MAY display this message, if the server
includes it in the response. Servers should not expect, however,
that users would read or see the message, since communication

6-2 Real Estate Transaction Specification Version 1.5 Second Edition

failure may make it impossible for the client to receive the Logoff
response.

SignOffMessage ::= *<TEXT, EXCLUDING CR/LF>

Version 1.5 Second Edition 7-1

S E C T I O N

7
CHAPTER 0SEARCH TRANSACTION

The Search transaction requests that the server search one or more searchable databases
and return the list of qualifying records. The body of the response contains the records
matching the query, presented in the requested format. The data can be returned in one of
three formats: COMPACT, COMPACT-DECODED or STANDARD-XML.

7.1 Search Types

The server MUST support at least one type of search. The types of searches supported by
the server are specified in the metadata. Each of these searches may by conducted against
different databases or tables depending on the server implementation.

Some searches are specified by well-known names. If a server implementation supports
one of these searches, it SHOULD use the well-known name to describe that search.

ActiveAgent An ActiveAgent Search is a search against the Agent/Member
database/table. This search only returns active agents. These are
agents that are currently authorized to access the server (paid-up,
not retired, etc.)

Agent An Agent Search is a search against the Agent/Member
database/table. It is used for retrieving information about the
agents.

History A History Search is a search against the history database/table.

Office An Office Search is a search against the office database/table. It
is used for retrieving information about the offices.

OpenHouse An OpenHouse Search is a search against the Open House
database/table.

Property A Property Search is a search against the property database/
tables. If the server supports a cross-property search then the
metadata will define a class to use to perform the cross-property
search.

Prospect A Prospect Search is a search against the Prospect database/
tables. A Prospect Search is used to retrieve prospect information
from the server database.

7-2 Real Estate Transaction Specification Version 1.5 Second Edition

Tax A Tax Search is a search against the public records database/
tables. Many systems have multiple public record databases.
Each public record database is assigned a class number. This
class number is used by the client application when submitting a
search to distinguish which database the search will be
conducted against.

Tour A Tour Search is a search against the Tour database/table.

Note RETS does not require that a server support any particular search, but it does require that
a server support at least one search. The user or maintainer of a server is responsible for
deciding which resources should be made searchable.

7.2 Search Terminology

7.2.1 Field Delimiter

A server may designate a particular OCTET to be used as a delimiter for separating
entries in both the COLUMNS list and the DATA returned using the COMPACT and
COMPACT-DECODED formats. The octet should be chosen to avoid the need to escape
data within a record

field-delimiter ::= HEX HEX

7.2.2 Field Name

A field is the keyword or code that the server uses to identify a particular column in the
database table. Each field may be either a System-Name, as defined in the metadata, or a
Standard-Name, as defined in the Real Estate Transaction XML DTD. The server MUST
accept either set of names interchangeably.

field ::= SQLFIELDNAME

Any valid data for a field.

field-data ::= *TEXT

7.2.3 Record Count

This value indicates the number of records on the server matching the search criteria sent
in the search query.

record-count ::= 1*9DIGITS

Note that this value may be greater than the number of records returned, if the server has
limited the size of the return for any reason.

7.2.4 Other terms

XML-data-record ::= <A data record as defined by the RETS Data XML DTD>.

Version 1.5 Second Edition 7-3

7.3 Required Request Arguments

7.3.1 Search Type and Class

The SearchType and Class arguments specify the data that the server is to search.

SearchType ::= ResourceID

The type of search to perform as discussed in Section 7.1 and defined in the Metadata (see
section 11.2.2).

Class :: = 1*32ALPHANUM

This parameter is set to a value that represents the class of data within the SearchType,
taken from the Class metadata (section 11.3.1). If the resource represented by the
SearchType has no classes, the Class parameter will be ignored by the server and MAY
be omitted by the client. If the client does include the Class parameter for a classless
search, the value SHOULD be the same as the ResourceID in order to insure forward
compatibility.

7.3.2 Query Specification

The specification consists of the query itself together with a designation of the query
language.

Query ::= <The query to be executed by the server>

The query is specified in the language described in Section 7.7.

QueryType ::= DMQL2

An enumeration giving the language in which the query is presented. The only valid
value for RETS/1.5 is “DMQL2” which indicates the query language described in Section
7.7

7.4 Optional Request Arguments

7.4.1 Count

The Count argument controls whether the server’s response includes a count.

Count ::= 0 | 1 | 2

If this argument is set to one (“1”), then a record-count is returned in the response in
addition to the data. Note that on some servers this will cause the search to take longer
since the count must be returned before any records are received. If this entry is set to two
(“2”) then only a record-count is returned; no data is returned. If this entry is not present
or set to zero (“0”) there is no record count returned.

Example: Count=2

Instructs the server to return only a count of the records matching the query.

7-4 Real Estate Transaction Specification Version 1.5 Second Edition

7.4.2 Format

The Format argument selects one of the three supported data return formats for the query
response.

Format ::= COMPACT | COMPACT-DECODED | STANDARD-XML |
STANDARD-XML:dtd-version

“COMPACT” means a field list <COLUMNS> followed by a delimited set of the data
fields. “COMPACT-DECODED” is the same as COMPACT except the data is returned in
a fully-decoded (people-readable) format. See Section 13 for more information on the
COMPACT formats. “STANDARD-XML” means an XML presentation of the data in the
format defined by the RETS Data XML DTD. Servers MUST support all formats. If the
format is not specified, the server MUST return STANDARD-XML.

Example: Format=COMPACT-DECODED

If the client has requests STANDARD-XML, it may also append a preferred DTD version.
The server SHOULD support at least the current version and the prior one.

Example: Format=STANDARD-XML:1.0

7.4.3 Limit

The Limit argument requests the server to apply or suspend a limit on the number of
records returned in the search.

Limit ::= NONE | 1*9DIGIT

If this entry is set to (“NONE”) or is not present, the server SHOULD treat this as a
request to suspend enforcement of the standard download limit. The use of "NONE"
MAY disable both the <MAXROWS> tag and return-code “20208 Maximum Records
Exceeded”. Client implementers should be aware that some server implementations
might not honor the request to disable the limit; the server operator’s business rules take
precedence over the request to waive the system download limit.

Alternatively, if the entry is set to a number greater than '0', the server MUST not return
more than the specified number of records. If the server did not return all matching
records then the <MAXROWS> tag MUST be sent at the end of the data stream.

7.4.4 Offset

The client may specify that a retrieval start at other than the first record in the set of
records matching he query by specifying the Offset argument.

Offset ::= 1*9DIGIT

This argument indicates to the server that it should start sending the data to the client
beginning with the record number indicated, with a value of “1” indicating to start with
the first record. This can be useful when requesting records in batches, however, client
implementers should be aware that data on the server MAY change as they iterate
through the batches and it is possible that some records may be missed or added. In other
words, the server is not required to maintain a cursor to the data.

Version 1.5 Second Edition 7-5

7.4.5 Select

By default, the server MUST return all fields accessible to the client. The client may select
a subset of those fields by specifying the Select argument.

Select ::= field *(, field)

This parameter is used to set the fields that are returned by the query. If this entry is not
present then all allowable fields for the search/class are returned. The server MAY return
an error when there are unknown fields in the select list. The server MUST NOT return
more fields than are specified in the Select argument when the client requests COMPACT
or COMPACT-DECODED data. It MAY return fewer if some of the field names are
invalid or if a requested field is unavailable to the user based on security or other
restrictions.

7.4.6 Restricted Indicator

In some instances, the server may withhold the values of selected fields on selected
records. In this case, the server SHOULD send back a null value, unless the client has
specified a RestrictedIndicator.

RestrictedIndicator ::=1*9ALPHANUM

This entry indicates to the server that it should set the restriction indicator to the value
specified by this tag. The default is that the server returns no restriction indicator.

Example: RestrictedIndicator = ####

This would mean that all fields that the user is not allowed to see within a record (e.g.
ExpirationDate) are returned with a value of ####.

Note that if the client requests fields that the server would withhold for every record, the
server MAY choose to omit the field from the list returned rather than use the
RestrictedIndicator for every record.

7.4.7 StandardNames

Queries may use either standard names or system names in the query (Section 7.7). If the
client chooses to use standard names, it MUST indicate this using the StandardNames
argument.

StandardNames ::= 0 | 1

If this entry is set to (“0”) or is not present the field names passed in the search query are
the SystemNames, as defined in the metadata. If this entry is set to (“1”) then the
StandardNames are used for the field names passed in the search query.

7.5 Required Response Arguments

There are no required response arguments.

7.6 Search Response Body Format

The body of the search response has the following format when replying to a request with
the format set to "COMPACT" or "COMPACT-DECODED":

7-6 Real Estate Transaction Specification Version 1.5 Second Edition

<RETS 1*SP ReplyCode= quoted-reply-code 1*SP
ReplyText= quoted-string *SP > CRLF

[count-tag]
[delimiter-tag]
[column-tag]
*(compact-data)
[max-row-tag]
[<RETS-STATUS [1*SP ReplyCode= quoted-end-reply-code 1*SP

ReplyText= quoted-string *SP]/>]
</RETS> CRLF

The body of the search response has the following format when replying to a format
request of “STANDARD-XML” data:

<?xml version="1.0" ?>
[doctype]
<RETS 1*SP ReplyCode= quoted-reply-code 1*SP

ReplyText= quoted-string *SP >
[count-tag]
*(XML-data-record)
[max-row-tag]
[<RETS-STATUS [1*SP ReplyCode= quoted-end-reply-code 1*SP

ReplyText= quoted-string *SP]/>]
</RETS> CRLF

doctype ::= <!DOCTYPE RETS SYSTEM "dtd-version">

dtd-version ::= <Name of the RETS DTD used to produce this document>

When the client requests the STANDARD-XML representation, it may also specify a DTD
version. The server SHOULD be prepared to support at least the current version and the
prior version. Data DTD versions are of the form

RETS-yyyymmdd.dtd

where yyyymmdd is the release date of the DTD.

compact-data ::= <DATA> field-delimiter *(field-data field-delimiter)
</DATA> CRLF

If a “COMPACT” or “COMPACT-DECODED” format is specified in the request then a
“<DATA>” tag, a delimited list of field-data and a “</DATA>” end tag are returned to
the client for each record returned. The field-delimiter is determined by the delimiter-tag.

count-tag ::= <COUNT 1*SP Records="record-count" 1*SP /> CRLF

When the client application specifies that a count should be returned (count-type = "1" |
"2") a count-tag MUST be sent by the server in the response. The “<COUNT>” tag MUST
be on the first line following the reply-code line. The record-count value indicates the
number of records on the server matching the search criteria sent in the search query.

column-tag ::= <COLUMNS> field-delimiter 1*(field field-delimiter)
</COLUMNS> CRLF

If a "COMPACT" format is specified in the request then a “<COLUMNS>” tag, including
a delimited list of the names of all the fields of data being returned, is sent back in the
response. These names are the system-names unless standard-names were used in the
query.

The field-delimiter is determined by the delimiter-tag.

delimiter-tag ::= <DELIMITER value =" field-delimiter "/> CRLF

This parameter tells the client which character (OCTET) to use as a delimiter for both the
COLUMNS list and the DATA returned. The server MUST send this parameter for

Version 1.5 Second Edition 7-7

“COMPACT” or “COMPACT-DECODED” formats. The “<DELIMITER>” tag MUST
precede column-tag.

max-row-tag ::= <MAXROWS/> CRLF

A tag that indicates the maximum number of records allowed to be returned by the server
has been exceeded, or alternatively, the Limit number passed by the client in the request
has been exceeded.

7.7 Query language

The query takes the form indicated below. This is the actual search criteria passed to the
server. The server parses this query and generates a server-compatible query based on the
parameters passed in the query-list.

7.7.1 Query language BNF

search-condition::= query-clause | (search-condition or query-clause)

query-clause ::= boolean-element | (query-clause and boolean-element)

boolean-element :: = [not] query-element

query-element ::= field-criteria | ((search-condition))

or ::= OR | |

and ::= AND | ,

not ::= NOT | ~

field-criteria ::= (field = field-content)

field-value ::= lookup-list | string-list | range-list | period | number
| string-literal

lookup-list ::= lookup-or | lookup-not | lookup-and

lookup-or ::= | lookup *(,lookup)

lookup-not ::= ~ lookup *(, lookup)

lookup-and ::= + lookup *(, lookup)

lookup ::= <any legal ALPHANUM value for the field as defined in the
metadata>

string-list ::= 1*(string *(, string))

string ::= string-eq | string-start | string-contains | string-char

string-eq ::= 1*ALPHANUM

string-start ::= 1*ALPHANUM *

string-contains ::= * 1*ALPHANUM *

string-char ::= *ALPHANUM 1*? *ALPHANUM

string-literal ::= " 1*(*(PLAINTEXT except ") *(2 * ") *(PLAINTEXT except ")
) "

7-8 Real Estate Transaction Specification Version 1.5 Second Edition

range-list ::= 1*(range *(, range))

range ::= between | greater | less

between ::= (period | number | string-eq) - (period | number | string-
eq)

greater ::= (period | number | string-eq) +

less ::= (period | number | string-eq) -

period ::= (date | datetime | time)

number ::= 1*DIGIT ["." *DIGIT]

date ::= (year - month - day) | TODAY

datetime ::= (year - month - day T hour : minute : second [. fraction])
| NOW

time ::= (hour ":" minute ":" second ["." fraction])

fraction ::= 1*3DIGIT

second ::= 2DIGIT

minute ::= 2DIGIT

hour ::= 2DIGIT

day ::= 2DIGIT

month ::= 2DIGIT

year ::= 4DIGIT

7.7.2 Query parameter interpretation

All datetimes submitted in queries MUST be in GMT. All other dates or times are
interpreted in host time. The host MUST interpret the token NOW as the current date and
time, and the token TODAY as the current date (with a time of 0000 if the host uses full
timestamps).

In processing a literal string, a server MAY substitute a string-char expression (?s) for
the range of characters that contain any non-ALPHANUM not supported by that server.

In processing decimal numbers, where rounding is necessary, a server SHOULD round
down for the bottom of ranges or values less than .5 and round up for the tops of ranges
or values .5 or greater.

There are three types of field values that can be passed in the query string. They are a
lookup-list, a range and a string. A lookup-list is a field that may only contain
predefined values. “Status” and “Type” typically fall into this category.

A range field is of type numeric or date. These fields can be searched based on a range of
values. “ListPrice” and “ListDate” fall into this category. All values specified in a <range>
field are to be treated as inclusive (e.g. 2+ is the same as 2 or greater, inclusive of 2; 2-3 is
the same as 2 to 3, inclusive of 2 and 3; 2- is the same as 2 or less, inclusive of 2).

A string field is any other character field not falling into the other two categories. These
are usually freeform text fields. An example of this kind of field is “OwnerName”.

Version 1.5 Second Edition 7-9

Each field MUST be a SystemName, as defined in the metadata, unless the
StandardName argument is set to “1”, in which case the fields MUST be
StandardNames. All values submitted for lookup-lists must be the Value in compact
format, as defined in Section 13.

7.7.3 Sub-queries

This query language provides for a nesting of sub-queries. For example:

Query=((AREA=|1,2)|(CITY=ACTON)),(LP=200000+)

Example: Query=(ST=|ACT,SOLD),
(LP=200000-350000),
(STR=RIVER*),
(STYLE=RANCH),
(EXT=+WTRFRNT,DOCK),
(LDATE=2000-03-01+),
(REM=*FORECLOSE*),
(TYPE=~CONDO,TWNHME),
(OWNER=P?LE)

Verbally, this would be interpreted as “return properties with (ST equal ACT or SOLD)
and (LP between 200000 and 350000, inclusive) and (STR beginning with RIVER) and
(STYLE equal RANCH) and (EXT equal WTRFRNT and DOCK) and (LDATE greater than
or equal to 2000-03-01) and (REM containing FORECLOSE) and (TYPE not equal to
CONDO and not equal to TWNHME) and (OWNER starting with P and having LE in the
3rd and 4th characters).”

7-10 Real Estate Transaction Specification Version 1.5 Second Edition

7.8 Reply Codes

Table 7-1 Search Transaction Reply Codes

Reply Code Meaning

0 Operation successful.
20200 Unknown Query Field

The query could not be understood due to an unknown field name.
20201 No Records Found

No matching records were found.
20202 Invalid Select

The Select statement contains field names that are not recognized by the
server.

20203 Miscellaneous Search Error
The quoted-string of the body-start-line contains text that MAY be
displayed to the user.

20206 Invalid Query Syntax
The query could not be understood due to a syntax error.

20207 Unauthorized Query
The query could not be executed because it refers to a field to which the
supplied login does not grant access.

20208 Maximum Records Exceeded
Operation successful, but all of the records have not been returned. This
reply code indicates that the maximum records allowed to be returned by
the server have been exceeded. Note: reaching/exceeding the "Limit"
value in the client request is not a cause for the server to generate this
error.

20209 Timeout
The request timed out while executing

20210 Too many outstanding queries
The user has too many outstanding queries and new queries will not be
accepted at this time.

20514 Requested DTD version unavailable.
The client has requested the metadata in STANDARD-XML format using
a DTD version that the server cannot provide.

Version 1.5 Second Edition 8-1

S E C T I O N

8
CHAPTER 0GET TRANSACTION

Gets an arbitrary file from the server or performs an arbitrary action, specified by URI.
This is a standard HTTP GET, per RFC 2616. The file to get is passed as part of the
Request-URI.

RETS servers need not support the GET transaction to any greater extent than is necessary
to implement the functionality of the Action URL (see 4.10, “Capability URL List”). If a
RETS server does not intend to include an Action URL in its login responses, it need not
support the GET transaction.

8.1 Required Request Arguments
There are no required request arguments.

8.2 Optional Request Arguments
There are no optional request arguments.

8.3 Required Response Arguments
There are no required response arguments.

8.4 Optional Response Arguments
There are no optional response arguments.

8.5 Status Conditions
See the General Status Codes in Section 3.10 for typical Status-Codes.

8-2 Real Estate Transaction Specification Version 1.5 Second Edition

Version 1.5 Second Edition 9-1

S E C T I O N

9
CHAPTER 0CHANGE PASSWORD TRANSACTION

The Change Password transaction provides a means for the user to change their
password. The new password is appended to the username and encrypted using the Data
Encryption Standard (DES), ANSI X3.92, using a hash of the old password as the key.

9.1 Required Request Arguments

PWD ::= PWD= <DES(Password : UserName)>

This is the DES-encrypted UserName and Password. The new Password and the
UserName are appended together with a colon (“:”) between and the resulting string is
encrypted using DES in Electronic Code Book (ECB) mode. The DES key is constructed
using the procedure in Section 9.6.

9.2 Optional Request Arguments

There are no optional request arguments.

9.3 Required Response Arguments

There are no required response arguments.

9.4 Optional Response Arguments

There are no optional response arguments.

9-2 Real Estate Transaction Specification Version 1.5 Second Edition

9.5 Reply Codes

9.6 Encryption Key Construction

The new password is communicated to the host as a string encrypted with the Data
Encryption Standard, ANSI X3.92. DES requires a 56-bit key, which is constructed as
follows:

1 The old password and username are converted to uppercase and concatenated together.

2 The resulting string is hashed using MD5.

3 The key is taken as the first 56 bits of the resulting hash value.

Table 9-1Change Password Reply Codes

Reply Code Meaning

0 Operation successful.
20140 Insecure password.

The password does not meet the site’s rules for password security.
20141 Same as Previous Password.

The new password is the same as the old one.
20142 The encrypted user name was invalid.

Version 1.5 Second Edition 10-1

S E C T I O N

10
CHAPTER 0UPDATE TRANSACTION

The update transaction is used to modify data on the server. The client transmits
information describing the update to perform. The information is then validated by the
server. If there are errors in the data, the server returns an error reply. If there are no
errors, the record as it was inserted/updated on the server will be returned. The record is
returned in the same manner as a record is returned from a search.

Update requests MUST use the POST method (rather than the GET method). This allows
the client to transmit characters beyond the HTTP length limit for the GET method.

10.1 Required Request Arguments

The request has the following format:

Resource= resource-name
&ClassName= class-name
&Validate= validate-flag
&Type= update-type
&Delimiter= field-delimiter
&Record= field-name = field-value *(field-delimiter field-name =
field-value)

resource-name ::= 1*32ALPHANUM

The name of the resource to be updated, as specified in the metadata. This is the
SystemName as defined in Section 11.2.2.

class-name ::= 1*24ALPHANUM

The name of the class to be updated, as defined in the metadata. This is the ClassName as
defined in section 11.3.1.

validate-flag ::= 1 | 0

If this parameter is set to one (“1”), then the record is validated by the host. Any fields
with metadata field “Attributes” set to “Autopop” in the metadata (see Section 11.3.4) will
have their field values filled in by the server and returned to the client. The record in the
server database is not updated. If this entry is set to zero (“0”) and there are no errors in
the record the record is updated on the server.

update-type ::= 1*24 ALPHANUM

The type of update to perform, as specified by the metadata. This is the UpdateType as
defined in Section 11.3.4.

10-2 Real Estate Transaction Specification Version 1.5 Second Edition

field-name ::= 1*32ALPHANUM

The name of the field to be updated, as specified in the metadata. This is the SystemName
as defined in Section 11.3.2.

field-delimiter ::= OCTET

The octet which will separate fields in the record. If this is not specified, an ASCII HT
character is assumed.

field-value ::= <varies depending on the field>

The text representation of the field value as defined by the metadata in Section 11.3.2
subject to the business rules.

10.2 Optional Request Arguments

There are no optional request arguments.

10.3 Required Response Arguments

There are no required response arguments.

10.4 Optional Response Arguments

There are no optional response arguments.

10.5 Update Response Body Format

The body of the update response has the following format when there are no errors:

<RETS 1*SP ReplyCode= quoted-reply-code 1*SP
ReplyText= quoted-string *SP > CRLF

transaction-id-tag
[delimiter-tag]
column-tag
compact-data
[<RETS-STATUS 1*SP ReplyCode= quoted-end-reply-code 1*SP

ReplyText= quoted-string *SP/>
</RETS> CRLF

The body of the update response has the following format when there are errors:

<RETS 1*SP ReplyCode= quoted-reply-code 1*SP
ReplyText= quoted-string *SP > CRLF

transaction-id-tag
[delimiter-tag]
column-tag
compact-data
error-block
</RETS> CRLF

error-block = <ERRORBLOCK> CRLF
1*(<ERRORDATA> field error-num error-offset error-text
</ERRORDATA>CRLF)
</ERRORBLOCK> CRLF

An Error Block is returned when there is a problem with one or more of the fields. The
error block contains information about the fields that have errors. It contains the field

Version 1.5 Second Edition 10-3

name, an error number, some additional text about the error (error-text), and where in the
field data the error occurred (error-offset).

error-num ::= 1*5DIGIT

This is the host error number. This number along with the error-text MAY be displayed to
the user when looking at the corresponding field in the client application.

error-offset ::= 1*5DIGIT

This is the offset into the field data that was sent by the client application to the server. It
indicates at what character in the field data the problem was encountered. This number is
set to zero (“0”) is the offset of the error is unknown.

error-text ::= *64ALPHANUM

This is the error text generated by the host to assist the user in determining the problem
with the field data. This text is associated with the error-num.

10.6 Validation

Validation routines are indications of the checks the host system will perform against a
field value before it is accepted for storage on the host. Some of these routines require
data available only on the host system. However, others are relatively simple and could
be performed by any RETS client to prevent invalid field values from being
submitted.There are several different types of validation to be performed by the client.

A compliant client is not required to enforce the local validations provided in this section.
However, if a client does not enforce the validations then the likelihood of the server
rejecting the record is greatly increased.

10.6.1 Lookup

The entry is validated against a list of acceptable values. If the metadata described in
Section 11.3.2 specifies the Interpretation as Lookup the only acceptable values for the
field are defined in the METADATA-LOOKUP referenced by LookupName.
Alternatively, if the metadata specifies a ValidationLookup the only acceptable values for
the field are defined in the METADATA-VALIDATION_LOOKUP referenced by the
ValidationLookup field.

10.6.2 MultiSelect Lookup

The entry is validated against a list of acceptable values. If the metadata described in
Section 11.3.2 specifies the Interpretation as LookupMulti, LookupBitstring or
LookupBitmask the only acceptable values for the field are defined in the METADATA-
LOOKUP referenced by LookupName. The maximum number of values that can be
selected is defined by MaxSelect.

10.6.3 Range

The entry must be between the Minimum and Maximum values specified in the metadata
(see Section 11.3.2).

10-4 Real Estate Transaction Specification Version 1.5 Second Edition

10.6.4 Test Expression

The parameter list contains an expression evaluated by the routine. If the expression is
true, the value of the field is acceptable. If the expression is false, the value is rejected. See
Section 11.4.9 for more information on Test Expressions.

10.6.5 External

The entry may be validated by searching a server resource. The Resource is defined for
searching and the parameter list includes a set of suggested input fields, a set of result
fields to display and a set of result fields to populate into the fields of the resource being
updated. Information for external validation is provided in Section 11.4.10.

10.7 Reply Codes

The quoted-string of the body-start-line contains text that MAY be displayed to the user.

Table 10-1 Update Transaction Reply Codes

Reply Code Meaning

0 Operation successful.
20301 Invalid parameter. Additional information is provided in the error block.
20302 Unable to save record on server.
20303 Miscellaneous Update Error.

Version 1.5 Second Edition 11-1

S E C T I O N

11
CHAPTER 0METADATA FORMAT

Metadata enables a client that receives data from a compliant server to better format the
data for display, and to store it efficiently for future retrieval. While use of the metadata is
not necessary to retrieve data for simple display purposes, more sophisticated clients will
want to use the metadata to make more intelligent use of the information retrieved.
Metadata MUST be supplied by a compliant server.

11.1 Organization and Retrieval

11.1.1 Metadata Organization

Metadata is organized by table/object, with each table having its own unique set of
metadata describing the fields available in that table/object. The organization permits
access to summary or detailed information about one or more resources (see Figure 11.1,
“Metadata Structure”).

The client retrieves the metadata by using the GetMetadata Transaction specifying the
METADATA table/object(s) of interest as the Type, and the specific instance in the ID (see
Section 5). The server supplies the metadata as documents using the formats described in
this section. The client MUST accept fields and attributes in the metadata that are not
defined in this standard, although it is not required to process those fields in any way.

The client may cache the metadata between sessions. If it does, it MUST record the value
of the METADATA-SYSTEM Version attribute from each session in which it caches
retrieved metadata, and MUST request new metadata whenever the MetadataVersion
Login response value changes except when previous versions are permitted by the
MinMetadataVersion value . The server MUST maintain a single version value for all
metadata changes. When changes are made, the version must be increased and that
version value and its date MUST be applied to all metadata elements and their parents
affected by the change or simultaneous group of changes.

11.1.2 General Rules for Interpretation

In general, metadata keywords defined in this standard such as field names and reserved
values are not case-sensitive. However, implementers are urged to adopt the strict-
generation/tolerant-acceptance rule and follow the case shown in this standard.

11-2 Real Estate Transaction Specification Version 1.5 Second Edition

Servers may choose to extend the content of any metadata table by including additional
keywords. Metadata field names for such extensions SHOULD begin with the letter “X”
followed by a hyphen, followed by an implementation-defined token in order to insure
compatibility with future versions of the standard.

Clients MUST ignore any metadata fields which they do not understand.

11.1.3 Metadata Retrieval Hierarchy

The ID argument in the GetMetadata transaction reflects the metadata hierarchy as shown
in Figure 11.1. For any metadata element, the ID argument is a list of the names of the
parent elements for the desired element, separated by colons. For example, to retrieve the
EditMask table for a given named Resource, the argument is simply the ResourceID:

System Resource Class

Object

SearchHelp

EditMask

Lookup

Validation-

Validation-

Validation-

Lookup

External

Expression

Table

Update

UpdateType

Validation-

LookupType

Validation-

LookupType

ExternalType

ForeignKey

Figure 11.1 Metadata Structure

Version 1.5 Second Edition 11-3

Type: METADATA-EDITMASK
ID: Property

where Property is the ID of one of the Resources listed in the Metadata-Resource table.

Since Tables are children of Classes, which are in turn children of Properties, the ID
parameter contains both parents:

Type: METADATA-TABLE
ID: Property : Res

where Res is a class listed in the Metadata-Class table under the resource Property.

11.1.4 Hierarchical Metadata in COMPACT Format

Metadata may be retrieved in either COMPACT or XML format (see Section 12). Compact
metadata is intended as a lower-bandwidth alternative to XML retrieval. It is not
intrinsically hierarchical; sections are not nested within one another but are entirely self-
contained as shown in the examples. If the client requests a hierarchical retrieval using a
wild card for one of the levels, the tables at that and lower levels are sent sequentially. The
only requirement for order is that there be no forward references within the metadata;
that is, higher-level tables such as METADATA-RESOURCE MUST be sent before lower-level
tables such as METADATA-LOOKUP.

11.2 System-Level Metadata

Clients can determine the number and type of searchable and updateable entities by
referencing the Resources. A server MUST advertise its resources. It MAY advertise all of
its available resources or MAY restrict the advertised list by logon or other criteria. A
server’s advertisement of a resource does not require that the server be able to
accommodate any arbitrary search for that user; the server MAY restrict access to
resources that it advertises. If the server supports multimedia objects then it MUST
advertise the supported types.

All resources that can be searched or updated are defined in the metadata described in
this section. There are three parts to the metadata. The first part provides system
information and describes the available resources, the second part describes the class
specific metadata for a resource, and the third part describes the shared metadata for a
resource.

11.2.1 System

The System metadata starts with a <METADATA-SYSTEM> tag with Version and Date
attributes. This tag is followed by a <SYSTEM> section, which contains the system
identification information. An optional <COMMENTS> section completes the System
metadata. The System metadata has the following format:

<METADATA-SYSTEM ⋅ Version="system-version" ⋅ Date="system-date" > ↵
<SYSTEM ⋅ SystemID="code-name" ⋅ SystemDescription="long-name" /> ↵
[<COMMENTS> ↵
*(comment ↵)
</COMMENTS> ↵]

</METADATA-SYSTEM> ↵

11-4 Real Estate Transaction Specification Version 1.5 Second Edition

System Version

system-version ::= 1*2DIGITS . 1*2DIGITS . 1*5DIGITS

This is the version of the document. The convention used is a
“<major>.<minor>.<release>” numbering scheme. Every time any metadata element
changes the version number MUST be increased.

System Date

system-date ::= DATE

The System Date is latest change date of any System metadata.

System Description

code-name ::= 1*10ALPHANUM

long-name ::= 1*64PLAINTEXT

comments ::= TEXT

An example Version section follows:

GetMetadata request:

Type: METADATA-SYSTEM
ID: 0

Compact reply:

<METADATA-SYSTEM Version="1.00.000" Date="Sat, 20 Mar 2002 12:03:38 GMT">
<SYSTEM SystemID= "NTREIS" SystemDescription= "North Texas Real Estate
Information System" />
<COMMENTS>
This is a comment line
</COMMENTS>
</METADATA-SYSTEM>

11.2.2 Resources

RETS does not require that any particular type of data be made available by a server.
However, a server MUST use a standard well-known name under which to make its data
available if a suitable well-known name is defined in the standard. Table 11-1 contains the
list of well-known resource names.

Table 11-1 Well-Known Resource Names

Resource Name Purpose

ActiveAgent A resource that contains information about active agents. These are
agents that are currently authorized to access the server (paid-up, not
retired, etc.)

Agent A resource that contains information about agents.

History A resource that contains information about the accumulated changes to
each listing.

Office A resource that contains information about broker offices.

OpenHouse A resource that contains information about open-house activities.

Version 1.5 Second Edition 11-5

Resource Metadata Content

The Resource metadata starts with a <METADATA-RESOURCE> tag with Version, and
Date attributes. This is followed by a <COLUMNS> section that contains the name of the
fields as defined in Table 11-2 followed by the <DATA> section that contains the actual
field information. The Resource metadata has the following format:

<METADATA-RESOURCE ⋅ Version="resource-version" ⋅Date="resource-date">↵
<COLUMNS>→resource-field *(→resource-field)→</COLUMNS>↵
*(<DATA>→resource-data *(→resource-data)→</DATA>↵)
</METADATA-RESOURCE>↵

resource-version::= 1*2DIGITS . 1*2DIGITS . 1*5DIGITS

This is the version of the Resource metadata. It is the highest version number of any of the
contained metadata elements. The convention used is a "<major>.<minor>.<release>"
numbering scheme. Every time any contained metadata element changes the version
number MUST be increased.

resource-date ::= DATE

The latest change date of any contained metadata.

resource-field = <Field Name from Table 11-2>

resource-data ::= <valid value as defined in Table 11-2>

An example Resource section follows:

GetMetadata request:

Type: METADATA-RESOURCE
ID: 0

Compact reply:

<METADATA-RESOURCE Version="1.00.000"
Date="Sat, 20 Mar 2002 12:03:38 GMT" >

<COLUMNS>→ResourceID→StandardName→VisibleName→Description→
ClassCount→KeyField→ClassVersion→ClassDate→ObjectVersion→
ObjectDate→SearchHelpVersion→SearchHelpDate→EditMaskVersion→
EditMaskDate →LookupVersion→LookupDate→UpdateHelpVersion→
UpdateHelpDate →ValidationExpressionVersion→
ValidationExpressionDate→ValidationLookupVersion →
ValidationLookupDate→ValidationExternalVersion→
ValidationExternalDate→</COLUMNS>

<DATA>→Agent→Agent→ Agent→Agent Table→1→ Agentid→1.00.000→
Sat, 20 Mar 2002 12:03:38 GMT→→→→→→→→→→→→→→→→→</DATA>

<DATA>→Property→Property→Property→Property Tables→5→
LN→1.00.000→ Sat, 20 Mar 2002 12:03:38 GMT→1.00.000→
Sat, 20 Mar 2002 12:03:38 GMT→1.00.000→

Property A resource that contains information about listed properties. Information
in this resource is described by Real Estate Transaction XML DTD in
addition to appropriate metadata.

Prospect A resource that contains information about sales or listing prospects.

Tax A resource that contains tax assessor information.

Tour A resource that contains information about tour activities.

Table 11-1 Well-Known Resource Names (continued)

Resource Name Purpose

11-6 Real Estate Transaction Specification Version 1.5 Second Edition

Sat, 20 Mar 2002 12:03:38 GMT →1.00.000→
Sat, 20 Mar 2002 12:03:38 GMT →1.00.000→
Sat, 20 Mar 2002 12:03:38 GMT →1.00.000→
Sat, 20 Mar 2002 12:03:38 GMT →1.00.000→
Sat, 20 Mar 2002 12:03:38 GMT →1.00.000→
Sat, 20 Mar 2002 12:03:38 GMT →1.00.000→
Sat, 20 Mar 2002 12:03:38 GMT →</DATA>

<DATA>→Tax→Tax→Tax→Multimedia objects→2→0→ PID→1.00.000→
Sat, 20 Mar 2002 12:03:38 GMT→→→→→→→→→→→→→→→→→</DATA>

</METADATA-RESOURCE>

Table 11-2 Metadata: Resource Description Fields

Field Name Content Type Description

ResourceID 1*32ALPHANUM The name which acts as a unique ID for this
resource.

StandardName 1*32ALPHANUM The name of the resource. This must be a well-
known name if applicable.

VisibleName 1*32PLAINTEXT The user-visible name of the resource.

Description 1*64PLAINTEXT A user-visible description of the resource.

KeyField 1*32ALPHANUM The SystemName (see 11.3.2) of the field that
provides a unique ResourceKey for each element
in this resource. All classes within a resource
must use the same KeyField.

ClassCount Numeric The number of classes in this resource. There
MUST be ClassCount METADATA_CLASS
descriptions for the resource. There MUST be at
least one Class for each Resource.

ClassVersion 1*2DIGITS . 1*2DIGITS .
1*5DIGITS

The latest version of the Class metadata for this
Resource. The convention used is a
“<major>.<minor>.<release>” numbering
scheme. Clients MAY rely on this data for cache
management.

ClassDate DATE The date on which the Class metadata for this
Resource was last changed. Clients MAY rely on
this date for cache management.

ObjectVersion 1*2DIGITS . 1*2DIGITS .
1*5DIGITS

The version of the Object metadata for this
Resource. The convention used is a
“<major>.<minor>.<release>” numbering
scheme. Clients MAY rely on this data for cache
management. A blank version indicates no
Object metadata is available for this Resource.

ObjectDate DATE The date on which the Object metadata for this
Resource was last changed. Clients MAY rely on
this date for cache management. A blank date
indicates no Object metadata is available for this
Resource.

SearchHelpVersion 1*2DIGITS . 1*2DIGITS .
1*5DIGITS

The version of the SearchHelp metadata for this
Resource. The convention used is a
“<major>.<minor>.<release>” numbering
scheme. Clients MAY rely on this data for cache
management. A blank version indicates no
SearchHelp is available for this Resource.

Version 1.5 Second Edition 11-7

SearchHelpDate DATE The date on which the SearchHelp metadata for
this Resource was last changed. Clients MAY
rely on this date for cache management. A blank
date indicates no SearchHelp is available for this
Resource.

EditMaskVersion 11*2DIGITS . 1*2DIGITS .
1*5DIGITS

The version of the EditMask metadata for this
Resource. The convention used is a
“<major>.<minor>.<release>” numbering
scheme. Clients MAY rely on this data for cache
management. A blank version indicates no Edit-
Mask is available for this Resource.

EditMaskDate DATE The date on which the EditMask metadata for
this Resource was last changed. Clients MAY
rely on this date for cache management. A blank
date indicates no EditMask is available for this
Resource.

LookupVersion 1*2DIGITS . 1*2DIGITS .
1*5DIGITS

The version of the Lookup metadata for this
Resource. The convention used is a
“<major>.<minor>.<release>” numbering
scheme. Clients MAY rely on this data for cache
management. A blank version indicates no
Lookup is available for this Resource.

LookupDate DATE The date on which the Lookup metadata for this
Resource was last changed. Clients MAY rely on
this date for cache management. A blank date
indicates no Lookup is available for this
Resource.

UpdateHelpVersion 1*2DIGITS . 1*2DIGITS .
1*5DIGITS

The version of the UpdateHelp metadata for this
Resource. The convention used is a
“<major>.<minor>.<release>” numbering
scheme. Clients MAY rely on this data for cache
management. A blank version indicates no
UpdateHelp is available for this Resource.

UpdateHelpDate DATE The date on which the UpdateHelp metadata for
this Resource was last changed. Clients MAY
rely on this date for cache management. A blank
date indicates no UpdateHelp is available for this
Resource.

Validation-
ExpressionVersion

1*2DIGITS . 1*2DIGITS .
1*5DIGITS

The version of the ValidationExpression meta-
data for this Resource. The convention used is a
"<major>.<minor>.<release>" numbering
scheme. Clients MAY rely on this data for cache
management. A blank version indicates no Vali-
dationExpression is available for this Resource.

Validation-
ExpressionDate

DATE The date on which the ValidationExpression
metadata for this Resource was last changed. Cli-
ents MAY rely on this date for cache manage-
ment. A blank date indicates no
ValidationExpression is available for this
Resource.

Table 11-2 Metadata: Resource Description Fields (continued)

Field Name Content Type Description

11-8 Real Estate Transaction Specification Version 1.5 Second Edition

11.2.3 Metadata Format for Foreign Keys

The ForeignKeys metadata table allows a server to advertise relationships among its
offered resources. A RETS client MAY use this information to provide a richer display of
related information. The ForeignKeys metadata consists of tuples containing a parent
resource type, a child resource type, and the foreign keys used to traverse the relation.

The ForeignKey metadata has the following format:

<METADATA-FOREIGNKEYS ⋅ Version="foreignkeys-version" ⋅
Date="foreignkeys-date">↵

<COLUMNS>→foreignkeys-field *(→foreignkeys-field)→</COLUMNS>↵
*(<DATA>→foreignkeys-data *(→foreignkeys-data)→</DATA>↵)
</METADATA-FOREIGNKEYS>↵

ForeignKeys Metadata Content

The compact-format ForeignKeys metadata begins with a <METADATA-FOREIGNKEYS>
element with Version and Date attributes. This is followed by a <COLUMNS> tag containing
the names of the supplied columns of the ForeignKeys metadata, and this is in turn
followed by a <COLUMNS> tag containing the rows of the ForeignKeys metadata table, one
per line.

foreignkeys-version::=1*2DIGITS . 1*2DIGITS . 1*5DIGITS

This is the version of the ForeignKeys metadata. The convention used is a
"<major>.<minor>.<release>" numbering scheme. Every time any contained metadata
element changes the version number MUST be increased.

foreignkeys-date::= DATE

The latest change date of any contained metadata.

ValidationLookup-
Version

1*2DIGITS . 1*2DIGITS .
1*5DIGITS

The version of the ValidationLookup metadata
for this Resource. The convention used is a
“<major>.<minor>.<release>” numbering
scheme. Clients MAY rely on this data for cache
management. A blank version indicates no Vali-
dationLookup is available for this Resource.

ValidationLookup-
Date

DATE The date on which the ValidationLookup meta-
data for this Resource was last changed. Clients
MAY rely on this date for cache management. A
blank date indicates no ValidationLookup is
available for this Resource.

ValidationExternal-
Version

1*2DIGITS . 1*2DIGITS .
1*5DIGITS

The version of the ValidationExternal metadata
for this Resource. The convention used is a
“<major>.<minor>.<release>” numbering
scheme. Clients MAY rely on this data for cache
management. A blank version indicates no Vali-
dationExternal is available for this Resource.

ValidationExternal-
Date

DATE The date on which the ValidationExternal meta-
data for this Resource was last changed. Clients
MAY rely on this date for cache management. A
blank date indicates no ValidationExternal is
available for this Resource.

Table 11-2 Metadata: Resource Description Fields (continued)

Field Name Content Type Description

Version 1.5 Second Edition 11-9

foreignkeys-field= <Field Name from Table 11-2>

foreignkeys-data::= <valid value as defined in Table 11-2>

An example ForeignKeys section follows:

GetMetadata request:

Type: METADATA-FOREIGNKEYS
ID: 0

Compact Reply:

<METADATA-FOREIGNKEYS Version="1.00.000000"
Date="Wed, 23 Jan 2002 12:37:38 GMT">

<COLUMNS>PARENT_RESOURCE_ID→PARENT_CLASS_ID→PARENT_SYSTEMNAME→
CHILD_RESOURCE_ID→CHILD_CLASS_ID→CHILD_SYSTEMNAME→</COLUMNS>
<DATA>→Property→RES→MLSNUM→TAX→TAX→MLSNUM→</DATA>
<DATA>→Property→RES→MLSNUM→History→History→MLSNUM→</DATA>
<DATA>→Property→RES→MLSNUM→OpenHouse→OpenHouse→MLSNUM→</DATA>
<DATA>→Property→RES→ListingAgentID→Agent→Agent→AgentID→</DATA>
<DATA>→Property→RES→COListingAgentID→Agent→Agent→AgentID→</DATA>
<DATA>→Property→RES→SellingAgentID→Agent→Agent→AgentID→</DATA>
<DATA>→Property→RES→COSellingAgentIDvAgent→Agent→AgentID→</DATA>
<DATA>→Property→RES→ListingOfficeID→Office→Office→OfficeID→</DATA>
<DATA>→Property→RES→SellingOfficeID→Office→Office→OfficeID→</DATA>
</METADATA-FOREIGNKEYS>

Table 11-3 Metadata Content: Foreign Keys

Metadata Field Content Type Description

ForeignKeyID 1*32ALPHANUM A Unique ID that represents the foreign key combination.

ParentResourceID 1*32ALPHANUM The ResourceID (Table 11-2) of the resource for which this
field functions as a foreign key . The name given MUST
appear in the METADATA-RESOURCE table..

ParentClassID 1*32ALPHANUM The name of the resource class for which this field functions
as a foreign key. This name MUST appear in the
RESOURCE-CLASS table for the given ParentResourceID.

ParentSystemName 1*32ALPHANUM The SystemName of the field in the given resource class
that should be searched for the value given in the this field.
This name must appear as a SystemName in the META-
DATA-TABLE section of the metadata for the Parent-
ClassID, and the named item must have its Searchable
attribute set to TRUE.

ChildResourceID 1*32ALPHANUM The ResourceID (Table 11-2) of the resource for which this
field functions as a foreign key . The name given MUST
appear in the METADATA-RESOURCE table.

ChildClassID 1*32ALPHANUM The name of the resource class for which this field functions
as a foreign key. This name MUST appear in the
RESOURCE-CLASS table for the given Child_Resource_ID.

ChildSystemName 1*32ALPHANUM The SystemName of the field in the given resource class
that should be searched for the value given in this field.
This name must appear as a SystemName in the META-
DATA-TABLE section of the metadata for the Child-
ClassID, and the named item must have its Searchable
attribute set to TRUE.

11-10 Real Estate Transaction Specification Version 1.5 Second Edition

The nesting of foreign keys MUST be such that recursive searches are NOT REQUIRED to
obtain data for well-known fields as defined in the RETS DTD. However, nesting of
foreign keys is allowed except in these cases.

11.3 Metadata Format for Class Elements

11.3.1 Class

A given data resource may house multiple classes of entries that can be searched or
updated separately. The metadata for a resource supporting searchable classes MUST
contain a class description for each class supported.

The Class metadata starts with a <METADATA-CLASS> tag with Resource, Version, and
Date attributes. This is followed by a <COLUMNS> section, which contains the name of
the fields as defined in Table 11-4 followed by the <DATA> section, which contains the
actual field information. The Class metadata has the following format:

<METADATA-CLASS ⋅ Resource="resource-id" ⋅ Version="class-version" ⋅
Date="class-date"> ↵

<COLUMNS>→class-field *(→class-field)→</COLUMNS> ↵
*(<DATA>→class-data *(→class-data)→</DATA> ↵)
</METADATA-CLASS> ↵

resource-id ::= 1*32ALPHANUM

This value MUST be a ResourceID found in the Resource metadata. It is the Resource to
which the Classes belong.

class-version ::= 1*2DIGITS . 1*2DIGITS . 1*5DIGITS

This is the version of the Class metadata. It is the highest version number of any of the
contained metadata elements. The convention used is a “<major>.<minor>.<release>”
numbering scheme. Every time any contained metadata element changes the version
number MUST be increased.

class-date ::= DATE

The latest change date of any of the contained metadata.

class-field ::= <Field Name from Table 11-4>

class-data ::= <valid value as defined in Table 11-4>

An example Resource Class section follows:

GetMetadata request:

Type: METADATA-CLASS
ID: 0

Compact reply:

<METADATA-CLASS Resource="Property" Version="1.00.000"
Date="Sat, 20 Mar 2002 12:03:38 GMT">

<COLUMNS>→ClassName→VisibleName→StandardName→Description→
TableVersion→TableDate→UpdateVersion →UpdateDate →</COLUMNS>

<DATA>→RES→Single Family→Residential→
Single Family Residential→1.00.000→
Sat, 20 Mar 2002 12:03:38 GMT→1.00.000→
Sat, 20 Mar 2002 12:03:38 GMT→</DATA>

<DATA>→CON→Condos→CommonInterest→Condos→1.00.000→

Version 1.5 Second Edition 11-11

Sat, 20 Mar 2002 12:03:38 GMT→1.00.000→
Sat, 20 Mar 2002 12:03:38 GMT→</DATA>

<DATA>→MUL→Multi Family→MultiFamily→
Multi Family Residential→1.00.000→
Sat, 20 Mar 2002 12:03:38 GMT→1.00.000→
Sat, 20 Mar 2002 12:03:38 GMT→</DATA>

<DATA>→MOB→Mobile Home→ResidentialProperty→
Mobile Homes→1.00.000→Sat, 20 Mar 2002 12:03:38 GMT→
1.00.000→Sat, 20 Mar 2002 12:03:38 GMT→</DATA>

<DATA>→LND→Lots and Land→Lots and Land→Lots and Land→
1.00.000→Sat, 20 Mar 2002 12:03:38 GMT→1.00.000→
Sat, 20 Mar 2002 12:03:38 GMT→</DATA>

</METADATA-CLASS>
<METADATA-CLASS Resource="Agent" Version="1.00.000"

Date="Sat, 20 Mar 2002 12:03:38 GMT" />
<COLUMNS>→ClassName→VisibleName→StandardName→Description→

TableVersion→TableDate→UpdateVersion →UpdateDate →</COLUMNS>
<DATA>→Agent→Agent→Agent→All Agents→1.00.000→

Sat, 20 Mar 2002 12:03:38 GMT→→→</DATA>
</METADATA-CLASS>

All tables that can be searched are defined in a document with the format defined in this
section. There are three parts to this section. The first part describes the searchable tables,
the second part describes the lookups referenced within the table section, and the third
describes the help text associated with searches and edit masks associated with updates.

11.3.2 Table

The Table metadata starts with a <METADATA-TABLE> tag with Resource, Class,
Version, and Date attributes. This is followed by a <COLUMNS> section, which contains

Table 11-4 Metadata Content: Resource Class

Metadata Field Content Type Description

ClassName 1*32ALPHANUM The name which acts as a unique ID for the class.

StandardName Residential-
Property

LotsAndLand

CommonInterest

MultiFamily

The XML standard name. This is the name from the Real Estate
Transaction XML DTD.

VisibleName 1*32PLAINTEXT The user-visible name of the class.

Description 1*64PLAINTEXT A user-visible description of the class.

TableVersion 1*2DIGITS .
1*2DIGITS .
1*5DIGITS

The version of the Table metadata that describes this Class. The
convention used is a "<major>.<minor>.<release>" numbering
scheme. Clients MAY rely on this data for cache management.

TableDate DATE The date on which the Table metadata for this Class was last
changed. Clients MAY rely on this date for cache management.

UpdateVersion 1*2DIGITS .
1*2DIGITS .
1*5DIGITS

The latest version of any of the Update metadata for this Class. The
convention used is a “<major>.<minor>.<release>” numbering
scheme. Clients MAY rely on this data for cache management. A
blank version indicates no Update is available for this Class.

UpdateDate DATE The date on which the any of the Update metadata for this Class
was last changed. Clients MAY rely on this date for cache manage-
ment. A blank date indicates no Update is available for this Class.

11-12 Real Estate Transaction Specification Version 1.5 Second Edition

the name of the fields as defined in Table 11-5, followed by the <DATA> section, which
contains the actual field information. The Table metadata has the following format:

<METADATA-TABLE SP Resource="resource-id" SP Class="class-id" SP
Version="table-version" SP Date="table-date"> ↵
<COLUMNS>→table-field *(→table-field)→</COLUMNS> ↵
*(<DATA>→table-data *(→table-data)→</DATA> ↵)
</METADATA-TABLE> ↵

resource-id ::= 1*32ALPHANUM

This value MUST be a ResourceID found in the Resource metadata. It is the Resource to
which the Classes belong.

class-id ::= 1*32ALPHANUM

This value MUST be a ClassName found in the Class metadata for this Resource. It is the
Class that this Table describes.

table-version ::= 1*2DIGITS . 1*2DIGITS . 1*5DIGITS

This is the version number of this Table metadata. The convention used is a
“<major>.<minor>.<release>” numbering scheme. Every time this Table metadata
changes the version number should be increased.

table-date ::= DATE

The latest change date of this Table metadata.

table-field ::= <Field Name from Table 11-5>

table-data ::= <valid value as defined in Table 11-5>

An example Table section follows:

GetMetadata request:

Type: METADATA-TABLE
ID: Property: RES

Compact reply:

<METADATA-TABLE Resource="Property" Class="RES" Version="1.00.000"
Date= "Sat, 20 Mar 2002 12:03:38 GMT" >

<COLUMNS>→SystemName→StandardName→LongName→DBName→ShortName→
Maximumlength→DataType→Precision→Searchable→Interpretation→
Alignment→UseSeparator→EditMaskID→LookupName→MaxSelect→Units→
Index→Minimum→Maximum→Default→Required→SearchHelpID→</COLUMNS>

<DATA>→LN→ListID→Listing ID→LN→ListID→8→Int→0→1→
Number→Left→0→→→→→1→→→1→→→</DATA>

<DATA>→PTYP→PropType→Property Type→PT→Prop Type→
2→Int→0→1→Number→Left→0→→→→→→→→→→→</DATA>

<DATA>→LP→ListPrice→List Price→LP→Lst Pr→8→Int→0→1→
Currency→Right→1→→→→→14→→→2→→→</DATA>

<DATA>→OWN→Owner→Owner Name→OWN→Own Name→20→Character→
0→0→→Left→0→→→→→→→→→→→</DATA>

<DATA>→VEW→View→View→VEW→View→10→Long→0→1→LookupBitmask→Left→
0→→VEW→1→→→→→→→→</DATA>

<DATA>→EF→ExtFeat→Features→EF→Ext Feat→10→Character→0→1→
LookupMulti→Left→0→→EFT→2→→→→→→→→</DATA>

<DATA>→SD→SchDist→School District→SD→SchDist→10→Character→
0→1→Lookup→Left→0→→SD→→→→→→→→→</DATA>

<DATA>→AR→MLSArea→MLS Area→AR→Area→4→Int→0→1→Lookup→Left→

Version 1.5 Second Edition 11-13

0→→AR→→→30→→→3→1→→</DATA>
</METADATA-TABLE>

The following table lists the minimum acceptable content for server-supplied metadata
used in describing a table.

Table 11-5 Metadata Content - Tables

Field Name Content Type Description

SystemName 1*32ALPHANUM The name of the field as it is known to the native server. The system
name SHOULD be unique within the Table; client behavior when
the Table metadata contains more than one row with a given Sys-
temName is undefined.

StandardName Alphanumeric The name of the field as it is known in the Real Estate Transaction
XML DTD.

LongName 1*32TEXT The name of the field as it is known to the user. This is a localizable,
human-readable string. Use of this field is implementation-defined;
it is expected that clients will use this value as a title for this datum
when it appears on a report.

DBName 1*10ALPHANUM A short name that can be used as a database field name. This name
may not start with a number nor can it be an ANSI-SQL92 reserved
word.

ShortName 1*24TEXT An abbreviated field name that is also localizable and human-read-
able. Use of this field is implementation-defined. It is expected that
clients will use this field in human-interface elements such as pick
lists.

MaximumLength Numeric The maximum length of the field, in characters. For numeric fields
(small, int, long and decimal) this is the display length rather than
the storage length, and includes all formatting such as the sign,
decimal point, commas or other insertion edits.

DataType Boolean A truth-value, stored as 1 for true and 0 for false.

Character An arbitrary sequence of printable characters.

Date A date, in YYYY-MM-DD format.

DateTime A timestamp, in YYYY-MM-DD Thh:mm:ss[.sss] format.

Time A time, stored in hh:mm:ss[.sss] format.

Tiny A signed numeric value that can be stored in no more than 8 bits.

Small A signed numeric value that can be stored in no more than 16 bits.

Int A signed numeric value that can be stored in no more than 32 bits.

Long A signed numeric value that can be stored in no more than 64 bits.

Decimal A decimal value that contains a decimal point (see Precision).

Precision Numeric The number of digits to the right of the decimal point when format-
ted.

Searchable Boolean A truth-value which indicates that the field is searchable.

11-14 Real Estate Transaction Specification Version 1.5 Second Edition

Interpretation Number An arbitrary number.

Currency A number representing a currency value.

Lookup A value that should be looked up in the Lookup Table. This is a sin-
gle selection type lookup (e.g. STATUS).

LookupMulti A value that should be looked up in the Lookup Table. This is a
multiple-selection type lookup (e.g. FEATURES) where the charac-
ter strings representing each selection are separated by commas.

LookupBitstring A value that should be looked up in the Lookup Table. This is a
multiple-selection lookup that is stored as a bit string. The bit string
is represented as a character string containing only the characters 0
and 1. The leftmost character represents the least-significant bit.
The lookup value of the bitstring element is the ordinal position of
each bit with the rightmost bit designated as bit 0.

LookupBitmask A value that should be looked up in the Lookup Table. This is a
multiple-selection type lookup that is stored as a bitmask field.
Fields of this type are limited to 31 choices.(e.g. VIEW). When con-
verted to binary, each bit represents one of the possible choices.
The choices are from lsb to msb. Lookup values are the numeric
equivalent of each bit’s binary value (i.e., the low order bit repre-
sents the first lookup and the high order bit represents the last
lookup choice). 2(value–1) is added to the total choice when querying
for its applicability.

Alignment Left The value MAY be displayed left aligned.

Right The value MAY be displayed right aligned.

Center The value MAY be centered in its field when displayed.

Justify The value MAY be justified within its field when displayed.

UseSeparator Boolean A truth-value which indicates that the numeric value MAY be dis-
played with a thousands separator.

EditMaskID 1*32ALPHANUM
Multiple masks are
separated by commas

The name of the entry in the METADATA-EDITMASK table (see
11.4.5, “Edit Mask”).

LookupName 1*32ALPHANUM The name of the METADATA-LOOKUP containing the lookup
data for this field (see Section 11.4.2). Required if Interpretation is
Lookup, LookupMulti, LookupBitstring or LookupBitmask.

MaxSelect Numeric This field is required if Interpretation is LookupMulti, LookupBit-
string or LookupBitmask. This value indicates the maximum num-
ber of entries that may be selected in the lookup.

Units (Feet | Meters |
SqFt | SqMeters |
Acres | Hectares)

Unit of measure.

Index Numeric An indicator that specifies this field is part of an index. The client
MAY use this informationto help the user create faster queries.

Minimum Numeric The minimum value that may be stored in a field (applies to
numeric fields only).

Maximum Numeric The maximum value that may be stored in a field (applies to
numeric fields only).

Table 11-5 Metadata Content - Tables (continued)

Field Name Content Type Description

Version 1.5 Second Edition 11-15

Date formats are based on ISO 8601 [7]

11.3.3 Update

A given data resource may house multiple classes of entries that can be updated
separately. The metadata for a resource supporting updateable classes MUST contain a
Class Table description for each class supported.

The Update Resource metadata starts with a <METADATA-UPDATE> tag with Resource,
Class, Version, and Date attributes. This is followed by a <COLUMNS> section, which
contains the names of the fields as defined in Table 11-6, “Metadata Content – Update”
followed by the <DATA> section, which contains the actual field information. The Update
metadata has the following format:

<METADATA-UPDATE ⋅ Resource="resource-id" ⋅ Class="class-id" ⋅
Version="update-version" ⋅ Date="update-date"> ↵

<COLUMNS>→update-field *(→update-field)→</COLUMNS> ↵
*(<DATA>→update-data *(→update-data)→</DATA> ↵)
</METADATA-UPDATE> ↵

resource-id ::= 1*32ALPHANUM

This value MUST be a ResourceID found in the Resource metadata. It is the Resource to
which the Classes belong.

class-id ::= 1*32ALPHANUM

This value MUST be a ClassName found in the Class metadata for this Resource. It is the
Class to which the Updates apply.

update-version ::= 1*2DIGITS . 1*2DIGITS . 1*5DIGITS

This is the version number of the Update metadata. This is the highest version number of
any of the contained metadata (Update Types). The convention used is a
“<major>.<minor>.<release>” numbering scheme. Every time any contained element
changes the version number MUST be increased.

update-date ::= DATE

The latest change date of any contained metadata element.

update-field ::= <Field Name from Table 11-6>

Default Serial The order that fields should appear in a default one-line search
result. Fields that should not appear in the default one-line format
should have a value of 0, Fields that should never be visible to the
user should have a value of –1.

Required Numeric A non-zero value indicates the field is required when searching.
This value should be sequential starting with one. If multiple fields
share the same value, then one of the fields with the same value is
required. (e.g. City = 1 & ZipCode = 1 implies that the user is
required to include either City or ZipCode in their query).

SearchHelpID 1*32ALPHANUM The name of the entry in the METADATA-SEARCH_HELP table
(see Section 11.4.4).

Unique Boolean A truth-value which indicates that this field is a unique identifier
for the record in which it appears.

Table 11-5 Metadata Content - Tables (continued)

Field Name Content Type Description

11-16 Real Estate Transaction Specification Version 1.5 Second Edition

update-data ::= <valid value as defined in Table 11-6>

An example Update Resource section follows:

GetMetadata request:

Type:METADATA_UPDATE
ID: Property: RES

Compact reply:

<METADATA-UPDATE Resource="Property" Class="RES" Version="1.00.000"
Date= "Sat, 20 Mar 2002 12:03:38 GMT" >

<COLUMNS> →UpdateName→Description→KeyField→Version→Date→</COLUMNS>
<DATA>→Add→Add a new Residential Listing→→1.00.000→

Sat, 20 Mar 2002 12:03:38 GMT→</DATA>
<DATA>→Change→Change a Residential Listing→ListNumber→1.00.000→

Sat, 20 Mar 2002 12:03:38 GMT→</DATA>
<DATA>→BOM→Put a Residential Listing Back on Market →ListNumber→

1.00.000→Sat, 20 Mar 2002 12:03:38 GMT→</DATA>
</METADATA-UPDATE>

11.3.4 Update Type

A given resource may house multiple classes of entries that can be updated separately.
Each of these classes may have different types of updates that can be performed. There
might be different test expressions or sequences. This section describes how each of those
are specified.

The Update Type metadata starts with a <METADATA-UPDATE_TYPE> tag with
Resource, Class, Type, Version, and Date Attributes. This is followed by a <COLUMNS>
section, which contains the name of the fields as defined in Table 11-7 followed by the

Table 11-6 Metadata Content – Update

Metadata Field Content Type Description

UpdateName 1*24ALPHANUM This identifies the nature of the update, such as "add" or "modify".
Some update types, such as changes to a property record (e.g.
"Sell", "Back on Market"), will imply a set of business rules specific
to the server. However, where possible, the following standard
type names should be used:

Description 1*64PLAINTEXT A user visible description of the Update Type.

KeyField 1*32ALPHANUM The SystemName (see Section 11.3.2) of the field that must be used
to retrieve an existing record for the update.

Version 1*2DIGITS .
1*2DIGITS .
1*5DIGITS

The latest version of this Update Type metadata. The convention
used is a “<major>.<minor>.<release>” numbering scheme. Cli-
ents MAY rely on this data for cache management.

Date DATE The date on which any of the content of this Update Type was last
changed. Clients MAY rely on this date for cache management.

Update Name Function

Add Add a new record

Clone Create a new record by copying an old one

Change Change an existing record

Delete Delete an existing record

Version 1.5 Second Edition 11-17

<DATA> section, which contains the actual field information. The metadata has the
following format:

<METADATA-UPDATE_TYPE ⋅ Resource="resource-id" ⋅ Class="class-id" ⋅
Version="update-type-version" ⋅ Date="update-type-date"> ↵

<COLUMNS>→update-type-field *(→update-type-field)→</COLUMNS> ↵
*(<DATA>→update-type-data *(→update-type-data)→</DATA> ↵)
</METADATA-UPDATE_TYPE> ↵

resource-id ::= 1*32ALPHANUM

This value MUST be a ResourceID found in the Resource metadata. It is the Resource to
which the Update Type belongs.

class-id ::= 1*32ALPHANUM

This value MUST be a ClassName found in the Class metadata for this Resource. It is the
Class to which this Update Type applies.

update-type ::= 1*32ALPHANUM

This value MUST be a Type found in the Update metadata for this Resource and Class. It
is the Update Type.

update-type-version::=1*2DIGITS . 1*2DIGITS . 1*5DIGITS

This is the version number of the Update Type metadata. The convention used is a
“<major>.<minor>.<release>” numbering scheme. Every time the Update Type metadata
changes the version number MUST be increased.

update-type-date:::= DATE

The latest change date of the Update Type metadata.

updatetype-field::= <Field Name from Table 11-7>

updatetype-data ::= <valid value as defined in Table 11-7>

An example Update Type section follows:

GetMetadata request:

Type: METADATA-UPDATE_TYPE
ID: Property: RES: Add

Compact reply:

<METADATA-UPDATE_TYPE Resource="Property" Class="RES" Update="Add"
Version="1.00.000" Date="Sat, 20 Mar 2002 12:03:38 GMT" >

<COLUMNS>→SystemName→Sequence→Attributes→Default→
ValidationExpressionID→UpdateHelpID→ValidationLookupName→
ValidationExternalName→</COLUMNS>

<DATA>→STNUM→1→2→→→StNumHelp→→→</DATA>
<DATA>→STNAME→2→2→→→→StreetName→→</DATA>
<DATA>→LD→3→2→→ListDate→DateHelp→→→</DATA>
<DATA>→LISTOFF→4→2,3→→→→→→</DATA>
</METADATA-UPDATE_TYPE>

Table 11-7 Metadata Content – Update Type

Metadata Field Content Type Description

SystemName 1*32ALPHANUM This is the SystemName of the field as defined in Section 11.3.2.

Sequence 1*5DIGIT Sequence number of the field, representing the order of entry

11-18 Real Estate Transaction Specification Version 1.5 Second Edition

11.4 Metadata Format for Shared Elements

11.4.1 Object

Object type names allow the operator of a particular server to advertise its supported
multimedia types. These types are standard MIME types as registered with IANA. RETS
does not require that a server make available any particular type of multimedia object.
However, a server MUST use a standard well-known name under which to make its
multimedia objects available, if a suitable well-known name is defined in the standard.
Multimedia names are defined in Table 11-8.

Attributes 1*(1 | 2 | 3 | 4 | 5
[,])

Multiple entries are separated by commas.

Default <PLAINTEXT> Default value of field (i.e. value if not specified by user)

ValidationExpres-
sionID

(1*32ALPHANUM
[","])

<multiple entries are separated by commas>

The names of the ValidationExpressions to use. See section 11.4.9

UpdateHelpID 1*32ALPHANUM The name of the entry in the METADATA-UPDATE_HELP table
(see Section 11.4.6).

ValidationLookup-
Name

1*32ALPHANUM The name of the ValidationLookup to use. See section 11.4.7

ValidationExternal-
Name

1*32ALPHANUM The name of the ValidationExternal to use. See section 11.4.10

Table 11-7 Metadata Content – Update Type (continued)

Metadata Field Content Type Description

Value Meaning Description

1 DisplayOnly Field may not be changed.

2 Required Field may not be left blank.

3 Autopop Field is populated by the server.

4 Interactive-
Validate

When changed, the client can vali-
date the field only by contacting the
server. All fields listed as “Addition-
alField” MUST also be passed.

5 ClearOn-
Cloning

The field should be cleared when the
containing record is cloned.

Table 11-8 Well-known Object Types

Object Name Purpose

Photo A representation image related to the element defined by the resource
KeyField.

Plat An image of the property boundaries related to the element defined
by the resource KeyField

Video A moving image with or without sound related to the element defined
by the resource KeyField.

Audio A sound clip related to the element defined by the resource KeyField.

Thumbnail A lower-resolution image related to the element defined by the
resource KeyField.

Version 1.5 Second Edition 11-19

The Object metadata starts with a <METADATA-OBJECT> tag with Resource, Version,
and Date attributes. This is followed by a <COLUMNS> section, which contains the name
of the fields as defined in Table 11-9 followed by the <DATA> section, which contains the
actual field information. The Object metadata has the following format:

<METADATA-OBJECT ⋅ Resource="resource-id" ⋅ Version="object-version" ⋅
Date="object-date"> ↵

<COLUMNS>→object-field *(→object-field)→</COLUMNS> ↵
*(<DATA>→object-data *(→object-data)→</DATA> ↵)
</METADATA-OBJECT> ↵

resource-id ::= 1*32ALPHANUM

This value MUST be a ResourceID found in the Resource metadata. It is the Resource to
which the Objects belong.

object-version ::= 1*2DIGITS . 1*2DIGITS . 1*5DIGITS

This is the version number of the Object metadata. The convention used is a
“<major>.<minor>.<release>” numbering scheme. Every time the Object metadata
changes the version number should be increased.

object-date ::= DATE

The latest change date of the Object metadata.

object-field ::= <Field Name from Table 11-9>

object-data ::= <valid value as defined in Table 11-9>

An example Resource Object section follows:

GetMetadata request:

Class:METADATA-OBJECT
ID:0

Compact reply:

<METADATA-OBJECT Resource="Property" Version="1.00.000"
Date="Sat, 20 Mar 2002 12:03:38 GMT" >

<COLUMNS>→ObjectType→StandardName→VisibleName→Description→</COLUMNS>
<DATA>→Photo→image→Full Photos→High Resolution Property Photos→</DATA>
<DATA>→Thumbnail→image→Small Photos→Low Resolution Property Photos→</
DATA>
</METADATA-OBJECT>

Map A location image related to the element defined by the resource Key-
Field.

VRImage A multiple-view, possibly-interactive image related to the element
defined by the resource KeyField.

Table 11-8 Well-known Object Types (continued)

Object Name Purpose

11-20 Real Estate Transaction Specification Version 1.5 Second Edition

11.4.2 Lookup

This section describes the lookup tables that are referenced by the LookupName in the
Table section. There MUST be a corresponding lookup table for every "LookupName".

The Lookup metadata starts with a <METADATA-LOOKUP> tag with Resource, Version,
and Date attributes. This is followed by a <COLUMNS> section, which contains the name
of the fields as defined in Table 11-10, followed by the <DATA> section, which contains
the actual lookup table information. The Lookup metadata has the following format:

<METADATA-LOOKUP ⋅ Resource="resource-id" ⋅ Version="lookup-version" ⋅
Date="lookup-date"> ↵

<COLUMNS>→lookup-field *(→lookup-field)→</COLUMNS> ↵
*(<DATA>→lookup-data *(→lookup-data)→</DATA> ↵)
</METADATA-LOOKUP> ↵

resource-id ::= 1*32ALPHANUM

This value MUST be a ResourceID found in the Resource metadata. It is the Resource to
which the Lookups belong.

lookup-version ::= 1*2DIGITS . 1*2DIGITS . 1*5DIGITS

This is the highest version number of any of the contained metadata (Lookup Types). The
convention used is a “<major>.<minor>.<release>” numbering scheme. Every time any
subordinate document changes the version number MUST be increased.

lookup-date ::= DATE

The latest change date of any contained metadata.

lookup-field ::= <Field Name from Table 11-10>

lookup-data ::= <valid value as defined in Table 11-10>

An example Lookup section follows:

GetMetadata request:

Type: METADATA-LOOKUP
ID: 0

Compact reply:

<METADATA-LOOKUP Resource="Property" Version="1.00.000"
Date="Sat, 20 Mar 2002 12:03:38 GMT" >

<COLUMNS>→LookupName→VisibleName→Version→Date→</COLUMNS>
<DATA>→1→Status→1.00.000→Sat, 20 Mar 2002 12:03:38 GMT→</DATA>

Table 11-9 Metadata Content: Resource Object

Metadata Field Content Type Description

ObjectType 1*24ALPHANUM The classification of the object. If one of the well-
known object types in Table 11-7 applies, then it
MUST be used.

MIMEType 1*24ALPHANUM The name of the object type. This is the "mime
type" that a client can pass to the "Accept" parame-
ter in the Get Object transaction (see Section 5.1).

VisibleName 1*32PLAINTEXT The user-visible name of the object type.

Description 1*64PLAINTEXT A user-visible description of the object type.

Version 1.5 Second Edition 11-21

<DATA>→2→Phone Type→1.00.000→Sat, 20 Mar 2002 12:03:38 GMT→</DATA>
</METADATA-LOOKUP>
<METADATA-LOOKUP Resource="Agent" Version="1.00.000"

Date="Sat, 20 Mar 2002 12:03:38 GMT">
<COLUMNS>→LookupName→VisibleName→Version→Date→</COLUMNS>
<DATA>→1→Status→1.00.000→Sat, 20 Mar 2002 12:03:38 GMT→</DATA>
</METADATA-LOOKUP>

11.4.3 Lookup Type

This section describes the content of a lookup table that is referenced by the LookupName
in the Table section. There MUST be a corresponding lookup table for every "Lookup",
“LookupMulti”, “LookupBitstring” and “LookupBitmask”.

The Lookup Type metadata starts with a <METADATA-LOOKUP_TYPE> tag with
Resource, Lookup, Version, and Date attributes. This is followed by a <COLUMNS>
section, which contains the name of the fields as defined in Table 11-11, followed by the
<DATA> section, which contains the actual lookup field information. The Lookup
metadata has the following format:

<METADATA-LOOKUP_TYPE ⋅ Resource="resource-id" ⋅
Version="lookup-type-version" ⋅ Date="lookup-type-date"> ↵

<COLUMNS>→lookup-type-field *(→lookup-type-field)→</COLUMNS> ↵
*(<DATA>→lookup-type-data *(→lookup-type-data)→</DATA> ↵)
</METADATA-LOOKUP_TYPE> ↵

resource-id ::= 1*32ALPHANUM

This value MUST be a ResourceID found in the Resource metadata. It is the Resource to
which the Lookup belongs.

lookup-name ::= 1*32ALPHANUM

This value MUST be a LookupName found in the Lookup metadata for this Resource. It is
the Name of the Lookup table.

lookup-type-version::=1*2DIGITS . 1*2DIGITS . 1*5DIGITS

This is the version number of the Lookup Type metadata. The convention used is a
“<major>.<minor>.<release>” numbering scheme. Every time the Lookup Type metadata
changes the version number should be increased.

Table 11-10 Metadata Content: Lookup

Field Name Content Type Description

LookupName 1*32ALPANUM The name of Lookup Table. There MUST be an
entry for each LookupName value used in the Table
metadata.

VisibleName 1*32PLAINTEXT A description of the table that is human-readable.

Version 1*2DIGITS .
1*2DIGITS .
1*5DIGITS

The latest version of this Lookup Table metadata.
The convention used is a
“<major>.<minor>.<release>” numbering scheme.
Clients MAY rely on this data for cache manage-
ment.

Date DATE The date on which any of the content of this Lookup
was last changed. Clients MAY rely on this date for
cache management.

11-22 Real Estate Transaction Specification Version 1.5 Second Edition

lookup-type-date::= DATE

The latest change date of the Lookup Type metadata.

lookup-type-field::= <Field Name from Table 11-11>

lookup-type-data::= <valid value as defined in Table 11-11>

An example Lookup Type section follows:

GetMetadata request:

Type: METADATA-LOOKUP_TYPE
ID: *

Compact reply:

<METADATA-LOOKUP_TYPE Resource="Property" Lookup="AR" Version="1.00.000"
Date="Sat, 20 Mar 2002 12:03:38 GMT">

><COLUMNS>→LongValue→ShortValue→Value→</COLUMNS>
<DATA>→Capitol Hill→Cap Hill→1→</DATA>
<DATA>→Juanita Hill→Juanita→2→</DATA>
<DATA>→Maple Valley→Mpl Valley→3→</DATA>
<DATA>→Downtown Redmond→Dntn Rdmd<4>→</DATA>
</METADATA-LOOKUP_TYPE>
<METADATA-LOOKUP_TYPE Resource="Agent" Lookup="STAT" Version="1.00.000"

Date= "Sat, 20 Mar 2002 12:03:38 GMT">
<COLUMNS>→LongName→ShortName→Value→</COLUMNS>
<DATA>→Active →ACT→1→</DATA>
<DATA>→Suspended→SUS→2→</DATA>
<DATA>→Inactvie→INA→3→</DATA>
</METADATA-LOOKUP_TYPE>

11.4.4 Search Help

This section describes the Search Help text tables that are referenced in the Table section.
There MUST be a corresponding table entry for each Search HelpTextID referenced in the
METADATA-TABLE.

The Search Help metadata starts with a <METADATA-SEARCH_HELP> tag with
Resource, Version, and Date attributes. This is followed by a <COLUMNS> section, which

Table 11-11 Metadata Content: Lookup Type

Field Name Content Type Description

LongValue 1*32TEXT The value of the field as it is known to the user. This is
a localizable, human-readable string. Use of this field is
implementation-defined; expected uses include dis-
plays on reports and other presentation contexts.

ShortValue 1*32TEXT An abbreviated field value that is also localizable and
human-readable. Use of this field is implementation-
defined; expected uses include picklist values and
other human interface elements.

Value 1*32ALPHANUM The value to be sent to the server when performing a
search. This field must be numeric for LookupBitmask
and LookupBitstring types. For LookupBitmask fields,
2(value-1) is used to compute this component as part of
the applicable choices. For LookupBitstring fields, this
is the position with in the field, 1-based, at which the
value contains a“1”.

Version 1.5 Second Edition 11-23

contains the name of the fields as defined in Table 11-12, followed by the <DATA>
section, which contains the actual help text. The Search Help Text metadata has the
following format:

<METADATA-SEARCH_HELP ⋅ Resource="resource-id" ⋅
Version="search-help-version" ⋅ Date="search-help-date"> ↵

<COLUMNS>→search-help-field *(→search-help-field)→</COLUMNS> ↵
*(<DATA>→search-help-data *(→search-help-data)→</DATA> ↵)
</METADATA-SEARCH_HELP> ↵

resource-id ::= 1*32ALPHANUM

This value MUST be a ResourceID found in the Resource metadata. It is the Resource to
which the Search Help belongs.

search-help-version::=1*2DIGITS . 1*2DIGITS . 1*5DIGITS

This is the version number of the SearchHelp metadata. The convention used is a
“<major>.<minor>.<release>” numbering scheme. Every time the SearchHelp metadata
changes the version number MUST be increased.

search-help-date::= DATE

The latest change date of the Search Help metadata.

search-help-field::= <Field Name from Table 11-12>

search-help-data::= <valid value as defined in Table 11-12>

An example Search Help definition follows:

GetMetadata request:

Type: METADATA-SEARCH_HELP
ID: Property

Compact reply:

<METADATA-SEARCH_HELP Resource="Property" Version="1.00.000"
Date="Sat, 20 Mar 2002 12:03:38 GMT" >

<COLUMNS>→SearchHelpID→Value→</COLUMNS>
<DATA>→1→Enter the number in the following format dxd→</DATA>
<DATA>→2→Enter the number in the following format d.dd→</DATA>
</METADATA-SEARCH_HELP>

11.4.5 Edit Mask

This section describes the Edit Mask table that is referenced in the Table section. There
MUST be a corresponding table entry for each Search EditMaskID referenced in the
METADATA-TABLE.

A Regular Expression is used to define the edit mask. Table 11-14 describes the structures
that make up RETS regulare expressions.

Table 11-12 Metadata Content: Search Help

Field Name Content Type Description

SearchHelpID 1*32ALPHANUM A unique ID for the help text. This ID is refer-
enced as the SearchHelpID in section 11.3.2

Value 1*256TEXT The value to be displayed to the user.

11-24 Real Estate Transaction Specification Version 1.5 Second Edition

The Editmask metadata starts with a <METADATA-EDITMASK> tag with Resource,
Version, and Date attributes. This is followed by a <COLUMNS> section, which contains
the name of the fields as defined in Table 11-12, followed by the <DATA> section, which
contains the actual help text. The Edit Mask metadata has the following format:

<METADATA-EDITMASK ⋅ Resource="resource-id" ⋅
Version="editmask-version" ⋅ Date="editmask-date"> ↵

<COLUMNS>→editmask-field *(→editmask-field)→</COLUMNS> ↵
*(<DATA>→editmask-data *(→editmask-data)→</DATA> ↵)
</METADATA-EDITMASK> ↵

resource-id ::= 1*32ALPHANUM

This value MUST be a ResourceID found in the Resource metadata. It is the Resource to
which the Editmasks belong.

editmask-version::= 1*2DIGITS . 1*2DIGITS . 1*5DIGITS

This is the version number of the EditMask metadata. The convention used is a
“<major>.<minor>.<release>” numbering scheme. Every time the EditMask metadata
changes the version number MUST be increased.

editmask-date = DATE

The latest change date of the Editmask metadata.

editmask-field ::= <Field Name from Table 11-12>

editmask-data ::= <valid value as defined in Table 11-12>

An example Edit Mask section follows:

GetMetadata request:

Type: METADATA-EDITMASK
ID: Property

Compact reply:

<METADATA-EDITMASK Resource="Property" Version="1.00.000" Date= "Sat, 20 Mar
2002 12:03:38 GMT">
<COLUMNS>→EditMaskID→Value→</COLUMNS>
<DATA>→1→[0-9]{1,2}[x][0-9]{1,2} →</DATA>
<DATA>→2→[0-9]{3}-[0-9]{2}-[0-9}{4} →</DATA>
</METADATA-EDITMASK>

Table 11-13 Metadata Content: Edit Mask

Field Name Content Type Description

EditMaskID 1*32ALPHANUM A unique ID for the Edit Mask. This ID is refer-
enced as the EditMaskID in section 11.3.2

Value 1*256TEXT The Regular Expression to be used.

Version 1.5 Second Edition 11-25

RETS Regular Expression Specification

RETS regular expressions are a subset of POSIX 1003.2 extended regular expressions [12],
supporting the metacharacters in Table 11-14.

The following is a simple example:

[0-9]+[a-fA-F][1-8][A]?[0-9]{2}[A-C]{1,3}

One or more digits, followed by an upper or lower case letter A - F, followed by a digit 1 –
8, optionally followed by one letter A, followed by two digits 0 – 9, followed by between
one and three of the letters A – C.

A phone number example:

[0-9]{3}-[0-9]{4}

11.4.6 Update Help

This section describes the Update Help Text tables that are referenced in the Update Type
section of the document. There MUST be a corresponding table entry for each Update
Help Text ID referenced in any of the METADATA-UPDATE_TYPEs.

The Update Help metadata starts with a <METADATA-UPDATE_HELP> tag with
Resource, Version, and Date attributes. This is followed by a <COLUMNS> section, which

Table 11-14 RETS Regular Expression Metacharacters

Metacharacter Function

. (period) Matches any single character

* Matches zero or more of the preceding pattern

+ Matches one or more of the preceding pattern

? Matches zero or one of the preceding pattern

| Alternation: used between two subpatterns, matches either the one to
its left or the one to its right.

() parentheses Grouping: causes the enclosed pattern to be treated as atomic. Paren-
theses may not be nested; that is, only one level of grouping is
required.

{min[,max]}
(braces)

Quantifier: matches at least min and at most max of the preceding pat-
tern, where min and max are both nonnegative integer values. If max
is omitted, matches exactly min of the preceding pattern.

[] brackets Character class: matches any of the characters contained in the brack-
ets. Except for the circumflex, described below, and the closing
bracket, characters within a character class are never treated as meta-
characters.

^ (circumflex) Used as the first character of a character class, reverses the sense of the
character class; for example, [^0] matches any character except a “0”.

- Operates only within brackets. Except as the first or last character,
denotes a range of characters on the default host collating sequence.
For example, [0-9] matches any digit. When - is the first or the last
character, it is treated as a member of the character class.

\ Escape: treats the following character as an ordinary character rather
than a metacharacter. For example, * matches a single asterisk. The \
character itself must be escaped. The escape character is not needed
within character classes.

11-26 Real Estate Transaction Specification Version 1.5 Second Edition

contains the name of the fields as defined in Table 11-15, followed by the <DATA>
section, which contains the actual help text. The Update Help Text metadata has the
following format:

<METADATA-UPDATE_HELP ⋅ Resource="resource-id" ⋅
Version="update-help-version" ⋅ Date="update-help-date"> ↵

<COLUMNS>→update-help-field *(→update-help-field)→</COLUMNS> ↵
*(<DATA>→update-help-data *(→update-help-data)→</DATA> ↵)
</METADATA-UPDATE_HELP> ↵

resource-id ::= 1*32ALPHANUM

This value MUST be a ResourceID found in the Resource metadata. It is the Resource to
which the Update Help belongs.

update-help-version::=1*2DIGITS . 1*2DIGITS . 1*5DIGITS

This is the version number of the Update Help metadata. The convention used is a
“<major>.<minor>.<release>” numbering scheme. Every time the Update Help metadata
changes the version number MUST be increased.

update-help-date::= DATE

The latest change date of the Update Help metadata.

update-help-field::= <Field Name from Table 11-15>

update-help-data::= <valid value as defined in Table 11-15>

An example Update Help section follows:

GetMetadata request:

Type: UPDATE_HELP
ID: Property

Compact reply:

<METADATA-UPDATE_HELP Resource="Property" Version="1.00.000"
Date="Sat, 20 Mar 2002 12:03:38 GMT" >

<COLUMNS>→UpdateHelpID→Value→</COLUMNS>
<DATA>→1→Enter the number in the following format dxd→</DATA>
<DATA>→2→Enter the number in the following format d.dd→</DATA>
</METADATA-UPDATE_HELP>

11.4.7 Validation Lookup

This section describes the Validation Lookup tables that are referenced in the Update
Type section of the document. There MUST be a corresponding Validation Lookup Table
for each one referenced in the METADATA-UPDATE_TYPEs.

The Validation Lookup metadata starts with a <METADATA-VALIDATION_LOOKUP>
tag with Resource, Version, and Date attributes. This is followed by a <COLUMNS>
section, which contains the name of the fields as defined in Table 11-16, followed by the

Table 11-15 Metadata Content: Update Help

Field Name Content Type Description

UpdateHelpID 1*32ALPHANUM A unique ID for the help text. This ID is refer-
enced as the UpdateHelpID in section 11.4.6.

Value 1*256TEXT The value to be displayed to the user.

Version 1.5 Second Edition 11-27

<DATA> section, which contains the actual field information. The Validation Lookup
metadata has the following format:

<METADATA-VALIDATION_LOOKUP ⋅ Resource="resource-id" ⋅
Version="valid-lookup-version" ⋅ Date="valid-lookup-date"> ↵

<COLUMNS>→valid-lookup-field *(→valid-lookup-field)→</COLUMNS> ↵
*(<DATA>→valid-lookup-data *(→valid-lookup-data)→</DATA> ↵)
</METADATA-VALIDATION_LOOKUP> ↵

resource-id ::= 1*32ALPHANUM

This value MUST be a ResourceID found in the Resource metadata. It is the Resource to
which the Validation Lookups belong.

valid-lookup-version=1*2DIGITS . 1*2DIGITS . 1*5DIGITS

This is the highest version number of any of the contained metadata (Lookup Types). The
convention used is a “<major>.<minor>.<release>” numbering scheme. Every time any
contained metadata changes the version number MUST be increased.

valid-lookup-date::= DATE

The latest change date of the contained metadata.

valid-lookup-field::=<Field Name from Table 11-16>

valid-lookup-data::= <valid value as defined in Table 11-16>

An example Validation Lookup section follows:

GetMetadata request:

Type: METADATA-VALIDATION_LOOKUP
ID: Property

Compact reply:

<METADATA-VALIDATION_LOOKUP Resource="Property" Version="1.00.000"
Date= "Sat, 20 Mar 2002 12:03:38 GMT" >

<COLUMNS>→ValidationLookupName→Parent1Field→ Parent2Field→
Version→Date→</COLUMNS>

<DATA>→School→Area→Subarea→1.00.000→Sat, 20 Mar 2002 12:03:38 GMT →</
DATA>
<DATA>→ZipCode→Area→→1.00.000→Sat, 20 Mar 2002 12:03:38 GMT →</DATA>
<DATA>→City→→→1.00.000→Sat, 20 Mar 2002 12:03:38 GMT →</DATA>
</METADATA-VALIDATION_LOOKUP>

Table 11-16 Metadata Content: Validation Lookup

Field Name Content Type Description

ValidationLookup-
Name

1*32ALPHANUM The unique name of this Validation Lookup. Each
Name in the Update Type ValidationLookupName
field MUST have a definition.

Parent1Field 1*32ALPHANUM If a value is present, it is a SystemName field in the
same table as defined in Section 11.3.2 and indicates a
dependency on this field.

Parent2Field 1*32ALPHANUM If a value is present it is a SystemName field in the
same table as defined in Section 11.3.2 and indicates
an additional dependency on this field.

11-28 Real Estate Transaction Specification Version 1.5 Second Edition

11.4.8 Validation Lookup Type

This section describes the content of the Validation Lookup tables that are referenced in
the Table section of the document. There MUST be a corresponding Validation Lookup
Type table for each one referenced in the METADATA-UPDATE_TYPE.

The Validation Lookup Type provides a list of all the valid values for a field. This is
different than the Lookup described in Section 11.4.2. The Validation Lookup is used for
two cases: 1) the list is too long to be provided as a standard lookup (e.g. Street Name) and
2) there is a dependency on the value in another field. For example, a valid entry for a
School District might depend on the Area and SubArea that is entered.

The Validation Lookup Type metadata starts with a <METADATA-
VALIDATION_LOOKUP_TYPE> tag with Resource, ValidationLookup, Version, and
Date attributes. This is followed by a <COLUMNS> section, which contains the name of
the fields as defined in Table 11-17, followed by the <DATA> section, which contains the
actual valid field information. If the parent fields are undefined then any value in the
Validation Lookup is acceptable. The Validation Lookup metadata has the following
format:

<METADATA-VALIDATION_LOOKUP_TYPE ⋅ Resource="resource-id" ⋅
Version="valid-lookup-type-version" ⋅
Date="valid-lookup-type-date"> ↵

<COLUMNS>→valid-lookup-type-field *(→valid-lookup-type-field)→
</COLUMNS> ↵

*(<DATA>→valid-lookup-type-data *(→valid-lookup-type-data)→
</DATA> ↵)

</METADATA-VALIDATION_LOOKUP_TYPE> ↵

resource-id ::= 1*32ALPHANUM

This value MUST be a ResourceID found in the Resource metadata. It is the Resource to
which the Validation Lookup Type belongs.

valid-lookup-type-name::=1*32ALPHANUM

This value MUST be a ValidationLookupName found in the Validation Lookup metadata
for the Resource. It is the name of the Validation Lookup Type.

valid-lookup-type-version::=1*2DIGITS . 1*2DIGITS . 1*5DIGITS

This is the version number of this Validation Lookup Type metadata. The convention
used is a “<major>.<minor>.<release>” numbering scheme. Every time this Validation
Lookup Type metadata changes the version number should be increased.

valid-lookup-type-date::=DATE

The latest change date of the Validation Lookup Type metadata.

Version 1*2DIGITS .
1*2DIGITS .
1*5DIGITS

The version of this Validation Lookup metadata. The
convention used is a “<major>.<minor>.<release>”
numbering scheme. Clients MAY rely on this data for
cache management.

Date DATE The date on which any of the content of this Valida-
tion Lookup metadata was last changed. Clients
MAY rely on this date for cache management.

Table 11-16 Metadata Content: Validation Lookup (continued)

Field Name Content Type Description

Version 1.5 Second Edition 11-29

valid-lookup-type-field::=<Field Name from Table 11-17>

valid-lookup-type-data::=<valid value as defined in Table 11-17>

An example Validation Lookup Type section follows:

GetMetadata request:

Type: METADATA-VALIDATION_LOOKUP_TYPE
ID: Property: School

Compact reply:

<METADATA-VALIDATION_LOOKUP_TYPE Resource="Property"
ValidationLookup="School" Version="1.00.000"
Date="Sat, 20 Mar 2002 12:03:38 GMT" >

<COLUMNS>→ValidText→Parent1Value→ Parent2Value→</COLUMNS>
<DATA>→133→AREA1→SUBAREA1→</DATA>
<DATA>→134→AREA1→SUBAREA2→</DATA>
<DATA>→135→AREA2→→</DATA>
</METADATA-VALIDATION_LOOKUP_TYPE>

11.4.9 Validation Expression

This section describes the ValidationExpression table that is referenced in Section 11.3.4.
There MUST be a corresponding table entry for each ValidationExpressionID referenced
in the METADATA-UPDATE_TYPEs for a Resource.

The table contains expressions that are to be evaluated when a field value is entered by the
user. Expressions in the list MUST be evaluated in the order in which they appear in the
list. There are three types of validation expressions, each introduced by a reserved token
preceding the expression, given in Table 11-18:

Table 11-17 Metadata Conent: Validation Lookup Type

Field Name Content Type Description

ValidText 1*32ALPHANUM A valid value for the field.

Parent1Value 1*32ALPHANUM If this field is present then the ValidText can be used
if the data in the Parent1 field is set to this value. If
Parent1 is present in the PARENTFIELDS tag then
this field is required.

Parent2Value 1*32ALPHANUM If this field is present then the ValidText can be used
if the data in the Parent2 field is set to this value. If
Parent2 is present in the PARENTFIELDS tag then
this field is required.

Table 11-18 Validation Expression Types

Keyword Type Purpose

ACCEPT Boolean If the expression is true, the field value is considered accepted
without further testing. Subsequent SET expressions MUST be
executed.

REJECT Boolean If the expression is true, the field value is considered rejected
without further testing. Subsequent SET expressions MUST
NOT be evaluated.

SET Assignment The expression MUST begin with a field name and an equal sign
(“=”). The following expression is evaluated and the result
stored in the designated field.

11-30 Real Estate Transaction Specification Version 1.5 Second Edition

Expressions are algebraic formulas containing keywords and operators. Expressions may
contain parentheses, and consist of keywords representing any of:

• The current value of any field in the input list

• The current value of any Well-Known Name field in the user’s agent record that is
returned in the response to the login transaction (see 4.9, “Well-Known Names”).

• Literal values.

• A special token (Table 11-18 Metadata Content – Validation Expression Special
Operand Tokens).

together with the operators in Table 11-19. Arithmetic operations MUST be carried out
using IEEE-754 arithmetic with a representation of at least 64 bits. Comparison operations
on strings MUST use simple binary collation. If an error or arithmetic exception occurs
during expression evaluation, field value is considered erroneous, regardless of the
expression type.

Table 11-19Validation Expression Operators

Operator
Prece-
dence Operation

/, *, .MOD. 1 Division, multiplication, and remainder (modulo)

+,– 2 Addition and subtraction, applied as follows:

1. If both operands are numeric, the operation is algebraic.

2. If either operand is a string, it is converted to numeric and the
operation is algebraic. If an error occurs during the conversion,
the field value MUST be rejected.

3. For “+”, if either operand is a date, the other must be an inte-
ger, a string that can be converted to an integer, or a string rep-
resenting an interval in ISO8601 format. If no conversion is
possible, the field value MUST be rejected

4. For “-”, if the left operand is a date or time, the other operand
must be a date, a time, or a string representing an interval, and
the result must be a string representing an interval in ISO8601
format.

.CONTAINS. 2 A Boolean operator taking strings as its left and right operands.
The operation is TRUE if the left operand contains the right
operand as a substring anywhere within it.

<, >, <=, >=, 3 Comparison operators with their conventional meaning. If one
operand is numeric and the other is a string, the string MUST be
converted to a number prior to the comparison. If an error
occurs during the conversion, the field value must be rejected.

=, != 4 Comparison operators with their conventional meaning. If one
operand is numeric and the other is a string, the string MUST be
converted to a number prior to the comparison. If an error
occurs during the conversion, the field value must be rejected.

.AND. 5 A Boolean operator that takes two Boolean operands, and
whose value is TRUE if and only if both of its operands are
TRUE.

.OR. 6 A Boolean operator that takes two Boolean operands, and
whose value is TRUE if either of its operands is TRUE.

.NOT. 7 A Boolean operator that takes a single Boolean operand and
returns its inverse.

Version 1.5 Second Edition 11-31

Literal values to be compared against dates or times are expressed in the ISO8601 format.

The Validation Expression metadata starts with a <METADATA-
VALIDATION_EXPRESSION> tag with Resource, Version and Date attributes. This is
followed by a <COLUMNS> section, which contains the name of the fields as defined in
Table 11-21, followed by the <DATA> section, which contains the actual Validation
Expressions. The Validation Expression metadata has the following format:

<METADATA-VALIDATION_EXPRESSION ⋅ Resource="resource-id" ⋅
Version="valid-expression-type-version" ⋅
Date="valid-expression-type-date"> ↵

<COLUMNS>→valid-expression-type-field
*(→valid-expression-type-field)→</COLUMNS> ↵

*(<DATA>→valid-expression-type-data *(→valid-expression-type-data)→
</DATA> ↵)

</METADATA-VALIDATION_EXPRESSION> ↵

resource-id ::= 1*32ALPHANUM

This value MUST be a ResourceID found in the Resource metadata. It is the Resource to
which the Objects belong.

valid-expression-version::=1*2DIGITS . 1*2DIGITS . 1*5DIGITS

This is the version number of the Validation Expression metadata. The convention used is
a “<major>.<minor>.<release>” numbering scheme. Every time the Validation
Expression metadata changes the version number should be increased.

valid-expression-date:=DATE

The latest change date of the ValidationExpression metadata.

valid-expression-field::=<Field Name from Table 11-21>

Table 11-20 Validation Expression Special Operand Tokens

Token Value

.TODAY. The current date.

.NOW. The current time.

.ENTRY. The current field text, as a string.

.EMPTY. A value that matches an empty or all-blank field. Supplies an empty
(zero-length) field when used in a SET expression.

.OLDVALUE. The text that was in the field as returned from the host in the search
operation. If the field is new, .OLDVALUE. is an empty string.

.USERID. The value of the user-id field returned in the Login transaction (Sec-
tion 4.9).

.USERCLASS. The value of the user-class field returned in the Login transaction (Sec-
tion 4.9).

.USERLEVEL. The value of the user-level field returned in the Login transaction (Sec-
tion 4.9).

.AGENTCODE. The value of the agent-code field returned in the Login transaction
(Section 4.9).

.BROKERCODE. The value of the broker-code field returned in the Login transaction
(Section 4.9).

.BROKERBRANCH. The value of the broker-branch field returned in the Login transaction
(Section 4.9).

11-32 Real Estate Transaction Specification Version 1.5 Second Edition

valid-expression-data::=<expression type keyword><valid validation expression>

An example Validation Expression section follows:

GetMetadata request:

Type: METADATA-VALIDATION_EXPRESSION
ID: Property

Compact reply:

<METADATA-VALIDATION_EXPRESSION Resource="Property" Version="1.00.000"
Date= "Sat, 20 Mar 2002 12:03:38 GMT" >

<COLUMNS>→ValidationExpressionID→ValidationExpressionType→Value→</COLUMNS>
<DATA>→Office1→ACCEPT>→

 LAG=.AGENTCODE. .OR. (LO=.BROKERCODE. .AND. .ENTRY.=OFFICE)→</DATA>
<DATA>→Agent1→ACCEPT→(LAG=.AGENTCODE). .OR. (SAG=.AGENTCODE.)→</DATA>
<DATA>→ListDate→ACCEPT→ LD>.TODAY. - 3 .AND. LD<.TODAY. + 3→</DATA>
</METADATA-VALIDATION_EXPRESSION>

11.4.10 Validation External

This section describes the Validation External tables that are referenced in the Update
Type section of the document. There MUST be a corresponding Validation External table
for each one referenced in any of the METADATA-UPDATE_TYPEs for the Resource.

The Validation External metadata starts with a <METADATA-
VALIDATION_EXTERNAL> tag with Resource, Version, and Date attributes. This is
followed by a <COLUMNS> section, which contains the name of the fields as defined in
Table 11-22, followed by the <DATA> section, which contains the actual field
information. The Validation External metadata has the following format:

<METADATA-VALIDATION_EXTERNAL ⋅ Resource="resource-id" ⋅
Version="validation-external-version" ⋅
Date="validation-external-date"> ↵

<COLUMNS>→validation-external-field *(→validation-external-field)→
</COLUMNS> ↵

*(<DATA>→validation-external-data *(→validation-external-data)→
</DATA> ↵)

</METADATA-VALIDATION_EXTERNAL> ↵

resource-id ::= 1*32ALPHANUM

This value MUST be a ResourceID found in the Resource metadata. It is the Resource to
which the Validation Externals belong.

validation-external-version::=1*2DIGITS . 1*2DIGITS . 1*5DIGITS

This is the highest version number of any of the contained metatadata (Validation
External Types). The convention used is a “<major>.<minor>.<release>” numbering

Table 11-21 Metadata Content: Validation Expression

Field Name Content Type Description

Validation-
ExpressionID

1*32ALPHANUM A unique ID for the ValidationExpression. This ID
is referenced as the ValidationExpression in Sec-
tion 11.3.4.

Validation-
ExpressionType

1*32ALPHANUM A validation expression type from Table 11-18.

Value 1*512TEXT The test expression to be evaluated.

Version 1.5 Second Edition 11-33

scheme. Every time any contained metadata changes the version number MUST be
increased.

validation-external-date::=DATE

The latest change date of the contained metadata.

validation-external-field::=<Field Name from Table 11-22>

validation-external-data::=<valid value as defined in Table 11-22>

An example Validation External section follows:

GetMetadata request:

Type: METADATA-VALIDATION_EXTERNAL
ID: Property

Compact reply:

<METADATA-VALIDATION_EXTERNAL Resource="Property" Version="1.00.000"
Date= "Sat, 20 Mar 2002 12:03:38 GMT" >

<COLUMNS>→ValidationExternalName→SearchResource→SearchClass→Version→Date→
</COLUMNS>
<DATA>→1→Office→ Office→1.00.000→Sat, 20 Mar 2002 12:03:38 GMT →</DATA>
<DATA>→2→Tax→HENN→1.00.000→Sat, 20 Mar 2002 12:03:38 GMT →</DATA>
</METADATA-VALIDATION_EXTERNAL>

11.4.11 Validation External Type

This section describes the content of the Validation External Type tables that are
referenced in the Table section of the document. There MUST be a corresponding
Validation External Type table for each one referenced in the METADATA-
UPDATE_TYPEs for the Resource.

The Validation External Type provides lists of search, display, and results fields. The
Validation External may be used for several cases: 1) The database involved is too large or
dynamic to be provided as a standard lookup (e.g. Tax). 2) There are business rules that
can only be enforced on the server (e.g. expiration dates). 3) The content of a field

Table 11-22 Metadata Content: Validation External

Field Name Content Type Description

ValidationExternal-
Name

1*32ALPHANUM The unique name of this Validation External. Each
Name in the Update Type ValidationExternalName
field MUST have a definition.

SearchResource 1*32ALPHANUM The ResourceID of the Resource to be searched from
11.2.2.

SearchClass 1*32ALPHANUM The ClassName within the Resource to be searched
from 11.3.1.

Version 1*2DIGITS "."
1*2DIGITS "."
1*5DIGITS

The latest version of this Validation External meta-
data. The convention used is a
“<major>.<minor>.<release>” numbering scheme.
Clients MAY rely on this data for cache manage-
ment.

Date DATE The date on which any of the content of this Valida-
tion External was last changed. Clients MAY rely on
this date for cache management.

11-34 Real Estate Transaction Specification Version 1.5 Second Edition

populates fields from another database (e.g. Sale_agent_name, Sale_office_name,
Sale_office_id from Sale_agent_id).

The metadata starts with a <METADATA-VALIDATION_EXTERNAL_TYPE> tag with
Resoure, ValidationExternal, Version, and Date attributes. This is followed by a
<COLUMNS> section, which contains the name of the fields as defined in Table 11-23,
followed by the <DATA> section, which contains the actual valid field information. The
Validation External Type metadata has the following format:

<METADATA-VALIDATION_EXTERNAL_TYPE ⋅ Resource="resource-id" ⋅
Version="valid-ext-type-version" ⋅ Date="valid-ext-type-date"> ↵

<COLUMNS>→valid-ext-type-field *(→valid-ext-type-field)→</COLUMNS>
↵
*(<DATA>→valid-ext-type-data *(→valid-ext-type-data)→</DATA> ↵)
</METADATA-VALIDATION_EXTERNAL_TYPE> ↵

resource-id ::=1*32ALPHANUM

This value MUST be a ResourceID found in the Resource metadata. It is the Resource to
which the Validation External Type belongs.

valid-ext-type-name::=1*32ALPHANUM

This value MUST be a ValidationExternalName found in the Validation External
metadata for the Resource. It is the name of the Validation External Type.

valid-ext-type-version::=1*2DIGITS . 1*2DIGITS . 1*5DIGITS

This is the version number of the Validation External Type metadata. The convention
used is a “<major>.<minor>.<release>” numbering scheme. Every time the Validation
External Type metadata changes the version number should be increased.

valid-ext-type-date::=DATE

The latest change date of the Validation External Type metadata.

valid-ext-type-field::=<Field Name from Table 11-23>

valid-ext-type-data::=<valid value as defined in Table 11-23>

An example Validation External Type section follows:

GetMetadata request:

Type: METADATA-VALIDATION_EXTERNAL_TYPE
ID: Property: VET1

Compact reply:

<METADATA-VALIDATION_EXTERNAL_TYPE Resource="Property"
ValidationExternal="VET1" Version="1.00.000"
Date="Sat, 20 Mar 2002 12:03:38 GMT" >

<COLUMNS>→SearchField→DisplayField→ResultsFields→</COLUMNS>
<DATA>→AgentID, AgentCode→AgentName, OfficeName→SaleAgentID=AgentID,

SaleAgentName=AgentName, SaleOfficeID=OfficeID,
SaleOfficeName=OfficeName→</DATA>

</METADATA-VALIDATION_EXTERNAL_TYPE>

Version 1.5 Second Edition 11-35

Table 11-23 Metadata Content: Validation External Type

Field Name Content Type Description

SearchField 1*512PLAINTEXT A comma separated list of valid fields using Sys-
temName from Section 11.3.2.

DisplayField 1*512PLAINTEXT A comma separated list of valid fields using Sys-
temName from Section 11.3.2.

ResultFields 1*1024PLAINTEXT A comma separated list of valid field pairs joined
by = (equal) the first is a target field in the table
being updated and the second is a source field in
the table being searched. The fields use a Sys-
temName from Section 11.3.2.

11-36 Real Estate Transaction Specification Version 1.5 Second Edition

Version 1.5 Second Edition 12-1

S E C T I O N

12
CHAPTER 0GETMETADATA TRANSACTION

The GetMetadata transaction is used to retrieve structured information known as
metadata related to the system entities. Metadata requested and returned from this
transaction are requested and returned as MIME media types.

12.1 Required Client Request Header Fields

In addition to the Required Client Request Header Fields specified in Section 3.4, the
header of any messages sent from the client MUST contain the following header fields:

Accept The client MUST request a media <type> using the standard
HTTP Accept header field. Media-type formats (subtypes) are
registered with the Internet Assigned Number Authority (IANA)
and use a format outlined in RFC 2045 [8]. When submitting a
request the client MUST specify the desired type and format. If
the server is unable to provide the desired format it SHOULD
return a “406 Not Acceptable” status. However, if there are no
objects of any <subtype> available for the requested object the
server SHOULD return “404 Not Found”. The format of the
Accept field is as follows:

Accept ::= Accept : type / subtype [; parameter]
*(, SP type / subtype [; parameter])

type ::= * | text

subtype ::= * | <A publicly-defined extension token that has been
registered with IANA>

parameter ::= q = < qvalue scale from 0 to 1 >

A compliant server MUST support at least text/plain and text/xml.

A more complete list is available at:

ftp.isi.edu/in-notes/iana/assignments/media-types

The qvalue is used to specify the desirability of a given media type/format, with “1”
being the most desirable, “0” being the least desirable, and a range in between. The
default qvalue is “1”.

12-2 Real Estate Transaction Specification Version 1.5 Second Edition

Example: Accept: text/xml,text/plain;q=0.5

Verbally, this would be interpreted as “text/xml is the preferred media type, but if that
does not exist, then send the text/plain entity.”

12.2 Required Request Arguments

Type ::= <A grouping of related metadata elements (see Section 11)>

The type of metadata being requested. The Type MUST begin with METADATA and
MAY be one of the defined metadata types (see Section 11).

 ID ::= metadata-id[: metadata-id]

metadata-id ::= 1*ALPHANUM | *

Metadata is organized hierarchically. Each level specifies in its first field an identifier for
the metadata contained within that level (e.g. for the Resource level: ResourceID--Agent,
Property, etc. for the Lookup level: LookupName—Status, Area, etc.). This identifier can
be used to restrict requests to the Type metadata contained within specific instances of
higher levels. If the last metadata-id is 0 (zero), then the request is for all Type metadata
contained within that level; if the last metadata-id is “*”, then the request is for all Type
metadata contained within that level and all metadata Types contained within the
requested Type.

Note: The metadata-id for METADATA-SYSTEM and METADATA-RESOURCE must be 0 or *.

12.3 Optional Request Arguments

Format = COMPACT | STANDARD-XML | STANDARD-XML:version

version ::= <RETS metadata DTD version>

“COMPACT” means a table descriptor , field list <COLUMNS> followed by a delimited
set of the data fields. See Section 11 for more information on the COMPACT formats.
“STANDARD-XML” means an XML presentation of the data in the format defined by the
RETS Metadata XML DTD. Servers MUST support all formats. If the format is not
specified, the STANDARD-XML presentation will be returned.

When the client requests the STANDARD-XML representation, it may also specify a DTD
version. The server SHOULD be prepared to support at least the current version and the
prior version. Metadata DTD versions are of the form

RETS-METADATA-yyyymmdd.dtd

where yyyymmdd is the release date of the DTD.

12.4 Required Server Response Header Fields

In addition to the other Required Server Header Fields specified in Section 3.3 the
following response header fields are required.

Content-Type The media type of the underlying data. The server MUST return
this field in all replies. This field MUST be set to the type of
media returned. See Section 12.1 for more information on <type>
and <subtype>.

Version 1.5 Second Edition 12-3

Content-Type ::= Content-Type : type / subtype

Example: Content-Type: text/plain

Content ID An ID for the object. This field MUST be returned with the value
of the first METADATA-component returned.

Content-ID ::= Content-ID : *64<TEXT, excluding CR/LF>

Example: Content-ID: METADATA-SYSTEM

MIME-Version All responses MUST include a MIME-Version of “1.0” in the
response header.

Example: MIME-Version: 1.0

12.5 Optional Server Response Header Fields

In addition to the other Optional Server Header Fields specified in Section 3.8 the
following response header field are also optional.

Description A text description of the object.

Description ::= Content-Description : *64<TEXT, excluding CR/LF>

Example: Content-Description: NTREIS

12.6 Required Response Arguments

There are no required response arguments.

12.7 Optional Response Arguments

There are no optional response arguments.

12.8 Metadata Response Body Format

The body of the metadata response has the following format when replying to a request
with the format set to“COMPACT”:

<RETS 1*SP ReplyCode=quoted-reply-code 1*SP
ReplyText=quoted-string *SP > CRLF

[*metadata-segment]
[rets-status-tag]
</RETS> CRLF

metadata-segment::= <A metadata segment as defined in Section 11.>

The body of the metadata response has the following format when replying to a format
request of "STANDARD-XML" data:

<?xml version="1.0" ?>
[doctype]
<RETS 1*SP ReplyCode=quoted-reply-code 1*SP

ReplyText=quoted-string *SP >
[*XML-metadata-segment]
[rets-status-tag]
</RETS> CRLF

doctype ::= <!DOCTYPE RETS SYSTEM "dtd-version">

12-4 Real Estate Transaction Specification Version 1.5 Second Edition

dtd-version ::= <Name of the RETS Metadata DTD used to produce this
document>

XML-metadata-segment::=A metadata segment as defined by the RETS Metadata XML
DTD.

12.9 Metadata

A full description of the Metadata Dictionary is provided in Section 11.

12.10 Reply Codes

Table 12-1 GetMetadata Reply Codes

Reply Code Meaning

20500 Invalid Resource

The request could not be understood due to an unknown resource.

20501 Invalid Type

The request could not be understood due to an unknown metadata type.

20502 Invalid Identifier

The identifier is not known inside the specified resource.

20503 No Metadata Found

No matching metadata of the type requested was found.

20506 Unsupported Mimetype

The server cannot return the metadata in any of the requested MIME types.

20507 Unauthorized Retrieval

The metadata could not be retrieved because it requests metadata to which the supplied
login does not grant access (e.g. Update Type data).

20508 Resource Unavailable

The requested resource is currently unavailable.

20509 Metadata Unavailable

The requested metadata is currently unavailable.

20510 Request Too Large

Metadata could not be retrieved because a system limit was exceeded.

20511 Timeout

The request timed out while executing.

20512 Too many outstanding requests

The user has too many outstanding requests and new requests will not be accepted at
this time.

20513 Miscellaneous error

The server encountered an internal error.

20514 Requested DTD version unavailable.

The client has requested the metadata in STANDARD-XML format using a DTD version
that the server cannot provide.

Version 1.5 Second Edition 13-1

S E C T I O N

13
CHAPTER 0COMPACT DATA FORMAT

Clients may choose to access data from a server in a “COMPACT” data format that does
not use full XML representation. When a client requests information from a compliant
server in “COMPACT” format, it will typically need to interpret the result by using the
metadata that the server makes available.

13.1 Overall format

Compact-format records are sequences of fields separated by delimiter. A tab character
(an octet with a binary value of 9) is the default delimiter unless another is specified as
part of the transaction. The sequence of fields MUST be described by a <COLUMNS> tag
in the body of the message that carries the compressed records. No field may be omitted
from the <DATA>; if the value of a particular field for some record is undefined, the value
SHOULD be represented by two delimiters with no intervening space.

Compact records are enclosed within a <DATA> start tag and a </DATA> end tag. The
records are separated from each other by a CRLF line termination sequence.

13.2 Decoded Format

Compact-decoded format requires sending data in its most people-readable form. Coded
data is data that is stored as an enumeration, multivalue, boolean, abbreviation, or
arbitrary string with its meaning defined elsewhere in the system. At minimum, a server
SHOULD perform the lookup or expansion from the lookup or validation-lookup values
defined in the metadata for that field but it MAY be a richer value provided by the
system’s reporting capabilities. If the field is multivalued, commas and a space separate
the decoded values.

13-2 Real Estate Transaction Specification Version 1.5 Second Edition

13.3 Transmission standards

A client or server transmitting a compact record MUST encode the data according to
Table 13-1.

Table 13-1 Compact Data Format Representation

Type Encoding Format

Numeric An optional sign, followed by zero or more digits, followed by an optional period, fol-
lowed optionally by zero or more digits. A valid number MUST contain at least one digit
if it includes a decimal point or sign. The value may contain leading zeros before the
period and/or trailing zeros after the decimal point and fraction, if any. Data types Tiny,
Small, Int and Long (Table 11-5) may be signed but may not have nonzero digits after the
decimal point. Values with the interpretation LookupBitmask must not be signed, nor
may they have nonzero digits after the decimal point.

Character The plain character sequence, except for LookupMulti, which contains multiple
sequences of characters separated by commas. Values with the interpretation Lookup-
Bitstring must conain only the characters “0” and “1”.

Date Eight digits in YYYY-MM-DD order, with dashes separating the year from the month
and the month from the day.

Time Six digits in hh:mm:ss[.sss], with colons separating the hour from the minute and the
minute from the second, with a three-digit optional fractions of a second format sepa-
rated from the seconds with a decimal <".">.

Date-Time A fourteen-digit string with separators as above, and a space between the day and the
hour, as YYYY-MM-DDThh:mm:ss[.sss], with a three-digit optional fractions of a sec-
ond separated from the seconds with a decimal <".">

MultiSelect A string consisting of one or more substrings, comma-delimited, each of which corre-
sponds to an entry in the field’s associated MetadataLookup table.

Boolean A single character, either 1 for true or 0 for false.

Version 1.5 Second Edition 14-1

S E C T I O N

14
CHAPTER 0SESSION PROTOCOL

A RETS session follows a well-defined timing sequence in becoming established and in
terminating. In particular, the authorization sequence MUST be followed in order to begin
using other transactions within the protocol. The protocol contains four phases:
connection establishment, authorization, session and termination.

14.1 Connection Establishment

A client initiates communication with a server by beginning a TCP connection on any
mutually agreed TCP port, with the default being 6103 for unencrypted connections, and
port 443 for SSL-encrypted connections. When the TCP connection has entered the
Established state, the session proceeds to the start of the Authorization phase.

14.2 Authorization

Authorization begins when the client sends the server a Login transaction. The Login
transaction contains the basic information that the server requires in order to start an
authorization decision: the user ID and optionally, some information about the client
software.

A server responds to the Login request by sending back a “401 Unauthorized” status code
and a WWW-Authenticate header. This is part of an authentication challenge to the client.
Part of the WWW-Authenticate header may contain a checksum (nonce) of a
concatenation of the following:

1 The client-IP.

2 The server-supplied timestamp.

3 The server’s private-key.

Server implementers should note that because of intervening proxy servers, the client IP
address may change from connection to connection.

The client concatenates the nonce to the checksum of the Request-URI; then performs an
MD5 digest using a concatenation of the username, realm and password as the secret. This
result is then returned to the server as part of an Authorization header. The server MUST
then compute the equivalent function using its own stored copy of the user’s password. If
the two match and the nonce is the same, the user is considered authenticated, and the

14-2 Real Estate Transaction Specification Version 1.5 Second Edition

login can proceed with the server informing the client of the available capabilities. The
login has been accomplished without actually sending the password. A server MAY
provide an anonymous login. A client wishing an anonymous login sends an empty
Authentication field in its Login transaction, after which the authorization proceeds as
before.

14.3 Session

Once the Authorization phase has been completed, both endpoints enter the Session
phase. During the Session phase, clients may issue any combination of requests for which
they are authorized. The first of these MUST be to issue a GET requests for the “Action”
URL, if any, included in the Login response (Section 4.10). After this, clients may issue
other transactions.

Clients MAY issue multiple transactions without waiting for responses. However, servers
are not required to process these requests in parallel, nor are servers required to complete
the requests in the order in which they were issued. If a client issues a request before
receiving a response to some earlier request, the client MUST be prepared to receive the
responses in any order. The only way for a client to guarantee sequential execution of
requests on every server is to wait for a response to any outstanding request before
issuing a new request.

14.4 Termination

A client SHOULD initiate termination of the session by sending a Logoff transaction. If a
server receives a Logoff transaction while other operations are pending, it SHOULD abort
those pending operations. However, a server MUST NOT rely on receiving a Logoff
transaction in order to terminate a session, due to the possibility of communications
problems preventing the transmission of the Logoff transaction by the client.

Servers SHOULD provide a timeout mechanism, and if they do, MUST inform the client
of the timeout interval during the Login transaction (Section 4.7).

Version 1.5 Second Edition 15-1

S E C T I O N

15
CHAPTER 0SAMPLE SESSIONS

To be supplied.

15-2 Real Estate Transaction Specification Version 1.5 Second Edition

Version 1.5 Second Edition 16-1

S E C T I O N

16
CHAPTER 0ACKNOWLEDGMENTS

The creation of this specification would not have been possible without the sponsorship
and coordination of efforts provided by the National Association of REALTORS®.

This document has benefited greatly from the comments of all those participating in the
National Association of REALTORS®-Standards Work Group.

In addition to the authors, valuable discussion instrumental in creating this document has
come from:

Richard Mendenhall
National Association of REALTORS®

Dale Stinton
National Association of REALTORS®

Larry Colson
Moore Data Management Services

Tom Curtis
Metro MLS

Kevin Knoepp
GTE Enterprise Solutions

Tom McLean
Resolution Software Consulting, Inc.

Tony Salvati
Grant Thornton

Errol Samuelson
RealSelect, Inc.

Allan Shapiro
Interealty Corporation

Stuart Schuessler
MarketLinx Corporation

Michael DelGaudio
MRIS, Inc.

16-2 Real Estate Transaction Specification Version 1.5 Second Edition

Mark Lesswing
National Association of Realtors®

Version 1.5 Second Edition 17-1

S E C T I O N

17
CHAPTER 0AUTHORS

Leo Bijnagte
Vista Information Systems
100 Washington Square, Suite 1000
Minneapolis, MN 55401

Email: leob@fnis.com

Dan Musso
WyldFyre Technologies, Inc.
900 East Hamilton Ave.
Suite 500
Campbell, CA 95008

Email: dan@WyldFyre.com

Bruce Toback
OPT, Inc.
11801 N. Tatum Blvd.
Suite 142
Phoenix, AZ 85028

Email: btoback@optc.com

17-2 Real Estate Transaction Specification Version 1.5 Second Edition

Version 1.5 Second Edition 18-1

S E C T I O N

18
CHAPTER 0REFERENCES

[1] Braden, R., “Requirements for Internet Hosts — Communication Layers” STD 3,
RFC 1123, IETF 1989.

[2] Fielding, R., “Hypertext Transfer Protocol — Version 1.1”, RFC 2616, January
1997

[3] Rivest, R., “The MD5 Message Authentication Algorithm”, RFC 1321, April 1992

[4] Crocker, D., “Standard for ARPA Internet Text Messages”, RFC 822, IETF 1982

[5] US-ASCII. Coded Character Set - 7-Bit American Standard Code for Information
Interchange. Standard ANSI X3.4-1986, ANSI, 1986.

[6] Franks, J., Hallam-Baker, P., Hostetler, J., Leach, P., Luotonen, A., Sink, E., and L.
Stewart, “An Extension to HTTP : Digest Access Authentication”, RFC 2617,
January 1997.

[7] International Organization for Standards, “Data Elements and Interchange
Formats - Information Interchange - Representation of Dates and Times”, ISO
8601, June 1988.

[8] Borenstein, N., Freed, F., “Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies”, RFC 2045, November 1996.

[9] American National Standard for Data Encryption Algorithm (DEA). Standard
ANSI X3.92, ANSI, 1981.

[10] Data Encryption Standard, FIPS46-2, December 30, 1993.

[11] DES Modes of Operation, FIPS81, December 2, 1980

[12] IEEE/ANSI Std. 1003.2-1992, Information Technology – Portable Operating
System Interface (POSIX®) Part 2

[13] Berners-Lee et al., “Uniform Resource Identifiers (URI): Generic Syntax”,
RFC 2396, IETF 1998

18-2 Real Estate Transaction Specification Version 1.5 Second Edition

Index of Compliance Items
B
Backwards compatibility for XML metadata 2
Backwards compatibility in XML 4, 6

C
Cache-Control header 5
Classless searches, resource identifier 3
Compression options 6

D
display of status codes 4

E
end-reply-code on successful transaction 4

I
Interpretation of the LIMIT tag 4

L
Logoff 2
Logout transaction 1

M
Metadata extension names 2
MIME type acceptance 1
Minimum requirements for compact-decoded format 1

P
Pending transactions at logoff 2

Q
Query parameter rounding 8

R
Representation of undefined data in COMPACT format 1
Requirement for search 5
Response when metadata type not found 1
Return value of restricted fields 5

S
session ID, default 3
Session timeout 5
SystemName uniqueness requirement 13

T
TCP port for SSL connection 2

U
Use of well-known search names 1

V
Version identifier usage 2

Version 1.5 Second Edition Real Estate Transaction Specification 1

A
account balance, 4-5
Accounting, 4-5

billing information, 6-1
logout, 6-1

agent code, 4-5
Authorization, 4-2

example, 4-2

B
Broker Code, 4-2
Broker information, 4-2

in expressions, 4-6
in login, 4-3, 4-4, 4-6

C
case sensitivity, 3-1
Case-sensitivity, 11-1
Change Password transaction, 9-1
ClassName, 11-11
Client Authentication, 4-1
Compatibility, 1-2
Compliance, 1-1
compliance, 1-2, 10-3
compression, 3-6
cookies, 4-3
Count, retrieving, 7-3
cursor, 7-4

D
data types, 11-13
Dates, 7-8
dates

calculations, 11-30
format, 2-3
time zone, 7-8

defaults, required specification items, 1-2
Delimiters

field, 7-2

E
Edit Mask, 11-23
End reply code, 3-4
Examples

update transaction, 10-1
Extending, 1-1

adding transactions, 4-7
extensions, metadata, 11-2

F
Field

selecting in search, 7-5
Field delimiter, 7-6
fields, restricting access to, 7-5
foreign keys, 11-8

G
GET transaction, 8-1

H
header

Accept, 3-2
Authorization, 3-3
Cache-Control, 3-5
Content-Length, 3-5
Content-Type, 3-5
Cookie, 3-3
Date, 3-5
Location, 5-4
RETS-Request-ID, 3-3, 3-6
RETS-Version, 3-2, 3-5
Set-Cookie, 4-3
Transfer-Encoding, 3-6
User-Agent, 3-2

help text
search, 11-22
update, 11-25

HTTP Method, 3-1
HTTP status code, 3-4

I
images, 5-1

K
KeyField, 11-6

L
literal string, 7-8
Login, 4-1
Logout, 6-1

M
MAXROWS, 7-4, 7-7
Metadata

version control, 4-4
metadata, 11-1

caching, 11-1
system, 11-3
version control, 11-1, 11-5, 11-8

Metadata extensions, 11-2
Metadata fields, unknown, 11-2
metadata, case-sensitivity, 11-1
MIME (Multimedia Internet Mail Extensions), 5-1

Multipart responses, 5-5
MIME Type, 5-1
multimedia

location, 5-3, 5-4

N
NOW, search token, 7-8

O
Object ID, 5-2
Office list tag, 4-6
offset, in query, 7-4

P
Password expiration, 4-5
Passwords

Index

2 Real Estate Transaction Specification Version 1.5 Second Edition

expiration, 4-5
photos, 5-1

location, 5-3, 5-4
object-ID, 5-2

port number, 4-2

Q
qop, 4-1
Query

example, 7-9
field names in, 7-5
limiting records returned, 7-3
specification, 7-3

query
cursor, 7-4

query language, 7-7
qvalue, 5-2

R
record count, 7-2, 7-6
record limit, 7-3
regular expressions, 11-25
Reply code

at end of reply, 3-4
Request Format, 3-1
resource

class, 11-10
Resource ID, 5-2
resources

well-known names, 11-4
RestrictedIndicator, 7-5
RETS status code, 3-4
RETS-Session-ID, 4-3
rounding, in query computations, 7-8

S
Search

return format, 7-4
Search Help, 11-22
Search types, 7-1

Secure Sockets Layer, 4-2
Security, 4-1

controlling access to functions, 4-6
security

controlling access to fields, 7-5
password, 9-1

Session ID, 4-3
SSL, 4-2
standard name, 7-5, 11-6
Status code, 3-4
SystemName, 7-9

T
Timeouts, 4-5
TODAY, search token, 7-8
transaction

Change Password, 9-1
GET, 8-1
Update, 10-1

U
Update Help, 11-25
Update transaction, 10-1
User class, 4-5
User information, 4-4
User level, 4-5
User-Agent, 3-2

V
validation, 10-3
validation expression, 11-29
VisibleName, 11-6, 11-11

W
well-known names

login fields, 4-6
object types, 11-18
resources, 11-4
transactions, 4-6

	Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Requirements
	1.3.1 Required Features
	1.3.2 Compatibility with Prior Versions

	1.4 Terminology

	Notational Conventions
	2.1 Augmented BNF
	2.2 Typographic Conventions
	2.3 Rules
	2.4 Atoms and Primitive Entities

	Message Format
	3.1 General Message Format
	3.2 Request Format
	3.3 Header Field Format
	3.4 Required Client Request Header Fields
	3.5 Optional Client Request Header Fields
	3.6 Response Format
	3.7 Required Server Response Header Fields
	3.8 Optional Server Response Header Fields
	3.9 Data Compression in RETS Transactions
	3.10 General Status Codes
	Table 3-1 General Status Codes

	Login Transaction
	4.1 Security
	4.1.1 User Authentication
	4.1.2 Client Authentication
	4.1.3 Data Security

	4.2 Authorization Example
	4.3 Required Request Arguments
	4.4 Optional Request Arguments
	4.4.1 BrokerCode Argument

	4.5 Optional Response Header Fields
	4.6 Login Response Body Format
	4.7 Required Response Arguments
	4.7.1 Broker
	4.7.2 Member Name
	4.7.3 Metadata Version Information
	4.7.4 User information
	4.7.5 Capability URL List

	4.8 Optional Response Arguments
	4.8.1 Accounting Information
	4.8.2 Access Control Information
	4.8.3 Office List Information

	4.9 Well-Known Names
	Table 4-1 Well-Known Names for Input Fields

	4.10 Capability URL List
	Table 4-2 Capability URL Descriptions

	4.11 Reply Codes
	Table 4-3 Valid Reply Codes for Login Transaction

	GetObject Transaction
	5.1 Required Client Request Header Fields
	5.2 Optional Client Request Header Fields
	5.3 Required Request Arguments
	5.4 Optional Request Arguments
	5.4.1 Location

	5.5 Required Server Response Header Fields
	5.6 Optional Server Response Header Fields
	5.6.1 Location
	5.6.2 Description

	5.7 Required Response Arguments
	5.8 Optional Response Arguments
	5.9 Metadata
	5.10 Resources
	5.11 Multipart Responses
	5.12 Reply Codes
	Table 5-1 GetObject Reply Codes

	Logout Transaction
	6.1 Required Request Arguments
	6.2 Optional Request Arguments
	6.3 Required Response Arguments
	6.4 Optional Response Arguments

	Search Transaction
	7.1 Search Types
	7.2 Search Terminology
	7.2.1 Field Delimiter
	7.2.2 Field Name
	7.2.3 Record Count
	7.2.4 Other terms

	7.3 Required Request Arguments
	7.3.1 Search Type and Class
	7.3.2 Query Specification

	7.4 Optional Request Arguments
	7.4.1 Count
	7.4.2 Format
	7.4.3 Limit
	7.4.4 Offset
	7.4.5 Select
	7.4.6 Restricted Indicator
	7.4.7 StandardNames

	7.5 Required Response Arguments
	7.6 Search Response Body Format
	7.7 Query language
	7.7.1 Query language BNF
	7.7.2 Query parameter interpretation
	7.7.3 Sub-queries

	7.8 Reply Codes
	Table 7-1 Search Transaction Reply Codes

	Get Transaction
	8.1 Required Request Arguments
	8.2 Optional Request Arguments
	8.3 Required Response Arguments
	8.4 Optional Response Arguments
	8.5 Status Conditions

	Change Password Transaction
	9.1 Required Request Arguments
	9.2 Optional Request Arguments
	9.3 Required Response Arguments
	9.4 Optional Response Arguments
	9.5 Reply Codes
	Table 9-1 Change Password Reply Codes

	9.6 Encryption Key Construction

	Update Transaction
	10.1 Required Request Arguments
	10.2 Optional Request Arguments
	10.3 Required Response Arguments
	10.4 Optional Response Arguments
	10.5 Update Response Body Format
	10.6 Validation
	10.6.1 Lookup
	10.6.2 MultiSelect Lookup
	10.6.3 Range
	10.6.4 Test Expression
	10.6.5 External

	10.7 Reply Codes
	Table 10-1 Update Transaction Reply Codes

	Metadata Format
	11.1 Organization and Retrieval
	11.1.1 Metadata Organization
	11.1.2 General Rules for Interpretation
	11.1.3 Metadata Retrieval Hierarchy
	11.1.4 Hierarchical Metadata in COMPACT Format

	11.2 System-Level Metadata
	11.2.1 System
	System Version
	System Date
	System Description

	11.2.2 Resources
	Table 11-1 Well-Known Resource Names
	Resource Metadata Content
	Table 11-2 Metadata: Resource Description Fields

	11.2.3 Metadata Format for Foreign Keys
	ForeignKeys Metadata Content
	Table 11-3 Metadata Content: Foreign Keys

	11.3 Metadata Format for Class Elements
	11.3.1 Class
	Table 11-4 Metadata Content: Resource Class

	11.3.2 Table
	Table 11-5 Metadata Content - Tables

	11.3.3 Update
	Table 11-6 Metadata Content - Update

	11.3.4 Update Type
	Table 11-7 Metadata Content - Update Type

	11.4 Metadata Format for Shared Elements
	11.4.1 Object
	Table 11-8 Well-known Object Types
	Table 11-9 Metadata Content: Resource Object

	11.4.2 Lookup
	Table 11-10 Metadata Content: Lookup

	11.4.3 Lookup Type
	Table 11-11 Metadata Content: Lookup Type

	11.4.4 Search Help
	Table 11-12 Metadata Content: Search Help

	11.4.5 Edit Mask
	Table 11-13 Metadata Content: Edit Mask
	RETS Regular Expression Specification
	Table 11-14 RETS Regular Expression Metacharacters

	11.4.6 Update Help
	Table 11-15 Metadata Content: Update Help

	11.4.7 Validation Lookup
	Table 11-16 Metadata Content: Validation Lookup

	11.4.8 Validation Lookup Type
	Table 11-17 Metadata Conent: Validation Lookup Type

	11.4.9 Validation Expression
	Table 11-18 Validation Expression Types
	Table 11-19 Validation Expression Operators
	Table 11-20 Validation Expression Special Operand Tokens
	Table 11-21 Metadata Content: Validation Expression

	11.4.10 Validation External
	Table 11-22 Metadata Content: Validation External

	11.4.11 Validation External Type
	Table 11-23 Metadata Content: Validation External Type

	GetMetadata Transaction
	12.1 Required Client Request Header Fields
	12.2 Required Request Arguments
	12.3 Optional Request Arguments
	12.4 Required Server Response Header Fields
	12.5 Optional Server Response Header Fields
	12.6 Required Response Arguments
	12.7 Optional Response Arguments
	12.8 Metadata Response Body Format
	12.9 Metadata
	12.10 Reply Codes
	Table 12-1 GetMetadata Reply Codes

	Compact Data Format
	13.1 Overall format
	13.2 Decoded Format
	13.3 Transmission standards
	Table 13-1 Compact Data Format Representation

	Session Protocol
	14.1 Connection Establishment
	14.2 Authorization
	14.3 Session
	14.4 Termination

	Sample Sessions
	Acknowledgments
	Authors
	References
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

